Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Am Chem Soc ; 143(27): 10041-10047, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181410

RESUMO

The development of very fast, clean, and selective methods for indirect labeling in PET tracer synthesis is an ongoing challenge. Here we present the development of an ultrafast photoclick method for the synthesis of short-lived 18F-PET tracers based on the photocycloaddition reaction of 9,10-phenanthrenequinones with electron-rich alkenes. The respective precursors are synthetically easily accessible and can be functionalized with various target groups. Using a flow photo-microreactor, the photoclick reaction can be performed in 60 s, and clinically relevant tracers for prostate cancer and bacterial infection imaging were prepared to demonstrate practicality of the method.

2.
Lancet Infect Dis ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39326422

RESUMO

Respiratory syncytial virus (RSV) is the second most common pathogen causing infant mortality. Additionally, RSV is a major cause of morbidity and mortality in older adults (age ≥60 years) similar to influenza. A protein-based maternal vaccine and monoclonal antibody (mAb) are now market-approved to protect infants, while an mRNA and two protein-based vaccines are approved for older adults. First-year experience protecting infants with nirsevimab in high-income countries shows a major public health benefit. It is expected that the RSV vaccine landscape will continue to develop in the coming years to protect all people globally. The vaccine and mAb landscape remain active with 30 candidates in clinical development using four approaches: protein-based, live-attenuated and chimeric vector, mRNA, and mAbs. Candidates in late-phase trials aim to protect young infants using mAbs, older infants and toddlers with live-attenuated vaccines, and children and adults using protein-based and mRNA vaccines. This Review provides an overview of RSV vaccines highlighting different target populations, antigens, and trial results. As RSV vaccines have not yet reached low-income and middle-income countries, we outline urgent next steps to minimise the vaccine delay.

3.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36015106

RESUMO

FAP-targeted radiopharmaceuticals represent a breakthrough in cancer imaging and a viable option for therapeutic applications. OncoFAP is an ultra-high-affinity ligand of FAP with a dissociation constant of 680 pM. OncoFAP has been recently discovered and clinically validated for PET imaging procedures in patients with solid malignancies. While more and more clinical validation is becoming available, the need for scalable and robust procedures for the preparation of this new class of radiopharmaceuticals continues to increase. In this article, we present the development of automated radiolabeling procedures for the preparation of OncoFAP-based radiopharmaceuticals for cancer imaging and therapy. A new series of [68Ga]Ga-OncoFAP, [177Lu]Lu-OncoFAP and [18F]AlF-OncoFAP was produced with high radiochemical yields. Chemical and biochemical characterization after radiolabeling confirmed its excellent stability, retention of high affinity for FAP and absence of radiolysis by-products. The in vivo biodistribution of [18F]AlF-NOTA-OncoFAP, a candidate for PET imaging procedures in patients, was assessed in mice bearing FAP-positive solid tumors. The product showed rapid accumulation in solid tumors, with an average of 6.6% ID/g one hour after systemic administration and excellent tumor-to-healthy organs ratio. We have developed simple, quick, safe and robust synthetic procedures for the preparation of theranostic OncoFAP-compounds based on Gallium-68, Lutetium-177 and Fluorine-18 using the commercially available FASTlab synthesis module.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35779837

RESUMO

The ecto-5'-nucleotidase is an important source of adenosine in the extracellular medium. Adenosine modulation appears early in evolution and performs several biological functions, including a role as an anti-inflammatory molecule. Here, we evaluate the activity and mRNA expression of ecto-5'-nucleotidase in response to lipopolysaccharide (LPS) using zebrafish as a model. Adult zebrafish were injected with LPS (10 µg/g). White blood cell differential counts, inflammatory markers, and ecto-5'-nucleotidase activity and expression in the encephalon, kidney, heart, and intestine were evaluated at 2, 12, and 24 h post-injection (hpi). At 2 hpi of LPS, an increase in neutrophils and monocytes in peripheral blood was observed, which was accompanied by increased tnf-α expression in the heart, kidney, and encephalon, and increased cox-2 expression in the intestine and kidney. At 12 hpi, monocytes remained elevated in the peripheral blood, while tnf-α expression was also increased in the intestine. At 24 hpi, the white blood cell differential count no longer differed from that of the control, whereas tnf-α expression remained elevated in the encephalon but reduced in the kidney compared with the controls. AMP hydrolysis in LPS-treated animals was increased in the heart at 24 hpi [72 %; p = 0.029] without affecting ecto-5'-nucleotidase gene expression. These data indicate that, in most tissues studied, inflammation does not affect ecto-5'-nucleotidase activity, whereas in the heart, a delayed increase in ecto-5'-nucleotidase activity could be related to tissue repair.


Assuntos
5'-Nucleotidase , Peixe-Zebra , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Animais , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/genética , Peixe-Zebra/metabolismo
5.
EJNMMI Radiopharm Chem ; 7(1): 11, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35526184

RESUMO

The increasing incidence of cancer over the years is one of the most challenging problems in healthcare. As cancer progresses, the recruitment of several immune cells is triggered. Infiltration of tumor-associated macrophages (TAMs) is correlated with poor patient prognosis. Since TAMs constitute a big portion of the tumor mass, targeting these cells seems to be an attractive approach for cancer immunotherapy. Additionally, TAM assessment using non-invasive imaging techniques, such as positron emission tomography (PET), might provide a better understanding of the role of TAMs in cancer, and a means for tumor profile characterization, patient selection for individualized immunotherapy and treatment monitoring. Imaging of TAMs using PET tracers is still in its infancy. TAMs have several characteristics that could be exploited as potential targets for imaging. Various PET tracers for these TAM biomarkers have been developed, although often in the context of (neuro)inflammatory diseases rather than cancer. Since macrophages in inflammatory diseases express similar biomarkers as TAMs, these PET tracers could potentially also be applied for the assessment of TAMs in the tumor microenvironment. Therefore, the present review provides an overview of the TAM biomarkers, for which potential PET tracers are available and discusses the status of these tracers.

6.
Psychopharmacology (Berl) ; 237(6): 1595-1606, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088835

RESUMO

INTRODUCTION: Depression is characterized by behavioral, cognitive and physiological changes, imposing a major burden on the overall wellbeing of the patient. Some evidence indicates that social stress, changes in growth factors (e.g., brain-derived neurotrophic factor (BDNF)), and neuroinflammation are involved in the development and progression of the disease. The monoamine oxidase A inhibitor drug harmine was suggested to have both antidepressant and anti-inflammatory properties and may, therefore, be a potential candidate for treatment of depression. AIM: The goal of this study was to assess the effects of harmine on behavior, brain BDNF levels, and microglia activation in control rats and a rat model of social stress. MATERIAL AND METHODS: Rats were submitted to 5 consecutive days of repeated social defeat (RSD) or control conditions. Animals were treated daily with harmine (15 mg/kg) or vehicle from day 3 until the end of the experiment. To assess the effects of harmine treatment on behavior, the sucrose preference test (SPT) was performed on days 1, 6, and 15, the open field test (OFT) on days 6 and 14, and the novel object recognition test (NOR) on day 16. Brain microgliosis was assessed using [11C]PBR-28 PET on day 17. Animals were terminated on day 17, and BDNF protein concentrations in the hippocampus and frontal cortex were analyzed using ELISA. RESULTS: RSD significantly decreased bodyweight and increased anxiety and anhedonia-related parameters in the OFT and SPT on day 6, but these behavioral effects were not observed anymore on day 14/15. Harmine treatment caused a significant reduction in bodyweight gain in both groups, induced anhedonia in the SPT on day 6, and significantly reduced the mobility and exploratory behavior of the animals in the OFT mainly on day 14. PET imaging and the NOR test did not show any significant effects on microglia activation and memory, respectively. BDNF protein concentrations in the hippocampus and frontal cortex were not significantly affected by either RSD or harmine treatment. DISCUSSION: Harmine was not able to reverse the acute effects of RSD on anxiety and anhedonia and even aggravated the effect of RSD on bodyweight loss. Moreover, harmine treatment caused unexpected side effects on general locomotion, both in RSD and control animals, but did not influence glial activation status and BDNF concentrations in the brain. In this model, RSD-induced stress was not strong enough to induce long-term effects on the behavior, neuroinflammation, or BDNF protein concentration. Thus, the efficacy of harmine treatment on these delayed parameters needs to be further evaluated in more severe models of chronic stress.


Assuntos
Depressão/tratamento farmacológico , Depressão/metabolismo , Harmina/administração & dosagem , Inibidores da Monoaminoxidase/administração & dosagem , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Animais , Antidepressivos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/psicologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/psicologia , Resultado do Tratamento
7.
Colloids Surf B Biointerfaces ; 188: 110754, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31887647

RESUMO

Naringin is a flavonoid widely known for its pharmacological properties, such as: anti-inflammatory and antioxidant ones, being an ally to avoid oxidative damage. Although naringin is an active easily found in citrus fruits, it has low bioavailability, biodistribution and also undergoes biotransformation in naringenin, limiting the described effects. The use of nanocapsules as drug carriers may increase solubility, improve biodistribution, impede the biotransformation thereof, and thus could improve the performance of naringin for use in treating neurological diseases. Therefore, the objective of this work is to produce a nanocapsule containing naringin, validate an analytical method by RP-HPLC to determination of the drug in nanoparticle and evaluate the toxicity. To that end, the blank nanocapsules (NB, without the drug) or naringin-loaded nanocapsules (NN) at the concentration of 2 mg/mL were prepared by interfacial deposition of the preformed polymer and the quantification of naringin by HPLC. Toxicity of the formulations was evaluated in vitro in rat hippocampal slices and in vivo models with C. elegans and Danio rerio (zebrafish). The analytical parameters evaluated (linearity, limit of detection and quantification, specificity, precision, accuracy and robustness) indicated adequate method to assay of naringin in nanocapsules by HPLC. There was no indication of toxicity by the nanocapsules in the evaluated biological assays.


Assuntos
Flavanonas/química , Nanocápsulas/química , Animais , Comportamento Animal , Caenorhabditis elegans , Modelos Animais , Ratos , Peixe-Zebra
8.
Neurotoxicol Teratol ; 70: 60-66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30366104

RESUMO

Prenatal alcohol exposure causes alterations to the brain and can lead to numerous cognitive and behavioral outcomes. Long-lasting effects of early ethanol exposure have been registered in glutamatergic and dopaminergic systems. The purinergic system has been registered as an additional target of ethanol exposure. The objective of this research was to evaluate if the ecto­5'­nucleotidase and adenosine deaminase activities and gene expression of adult zebrafish exposed to 1% ethanol during early development could be part of the long-lasting targets of ethanol. Zebrafish embryos were exposed to 1% ethanol in two distinct developmental phases: gastrula/segmentation (5-24 h post-fertilization) or pharyngula (24-48 h post-fertilization). At the end of three months, after checking for morphological outcomes, the evaluation of enzymatic activity and gene expression was performed. Exposure to ethanol did not promote gross morphological defects; however, a significant decrease in the body length was observed (17% in the gastrula and 22% in the pharyngula stage, p < 0.0001). Ethanol exposure during the gastrula/segmentation stage promoted an increase in ecto­5'­nucleotidase activity (39.5%) when compared to the control/saline group (p < 0.0001). The ecto­5'­nucleotidase gene expression and the deamination of adenosine exerted by ecto and cytosolic adenosine deaminase were not affected by exposure to ethanol in both developmental stages. HPLC experiments did not identify differences in adenosine concentration on the whole encephala of adult animals exposed to ethanol during the gastrula stage or on control animals (p > 0.05). Although the mechanism underlying these findings requires further investigation, these results indicate that ethanol exposure during restricted periods of brain development can have long-term consequences on ecto­5'­nucleotidase activity, which could have an impact on subtle sequels of ethanol early exposure.


Assuntos
5'-Nucleotidase/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Etanol/farmacologia , Efeitos Tardios da Exposição Pré-Natal , Fosfatase Ácida/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Dopamina/metabolismo , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Peixe-Zebra/embriologia
9.
Pharmacol Biochem Behav ; 135: 210-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26099242

RESUMO

Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine.


Assuntos
Cafeína/farmacologia , Canabidiol/antagonistas & inibidores , Canabidiol/toxicidade , Estimulantes do Sistema Nervoso Central/farmacologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/psicologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Transtornos da Memória/induzido quimicamente , Atividade Motora/efeitos dos fármacos , Receptor A2A de Adenosina/efeitos dos fármacos , Peixe-Zebra
10.
Pharmacol Biochem Behav ; 139 Pt B: 134-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26569549

RESUMO

Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine.


Assuntos
Animais
11.
Int J Dev Neurosci ; 31(1): 75-81, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22995533

RESUMO

Hyperargininemia is an inborn error of metabolism (IEM) characterized by tissue accumulation of arginine (Arg). Mental retardation and other neurological features are common symptoms in hyperargininemic patients. Considering purinergic signaling has a crucial role from the early stages of development and underlying mechanisms of this disease are poorly established, we investigated the effect of Arg administration on locomotor activity, morphological alterations, and extracellular nucleotide hydrolysis in larvae and adult zebrafish. We showed that 0.1 mM Arg was unable to promote changes in locomotor activity. In addition, 7-day-post-fertilization (dpf) larvae treated with Arg demonstrated a decreased body size. Arg exposure (0.1 mM) promoted an increase in ATP, ADP, and AMP hydrolysis when compared to control group. These findings demonstrated that Arg might affect morphological parameters and ectonucleotidase activities in zebrafish larvae, suggesting that purinergic system is a target for neurotoxic effects induced by Arg.


Assuntos
Arginina/farmacologia , Larva/efeitos dos fármacos , Nucleotidases/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Fatores Etários , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/ultraestrutura , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Peixe-Zebra
12.
Neurotoxicol Teratol ; 33(6): 680-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21914471

RESUMO

Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Cafeína/farmacologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Receptores Purinérgicos P1/genética , Peixe-Zebra/embriologia , Animais , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Tato/efeitos dos fármacos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA