Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Chem ; 62(7): 512-534, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369696

RESUMO

The discovery of new ceramic materials containing Ba-La-Cu oxides in 1986 that exhibited superconducting properties at high temperatures in the range of 35 K or higher, recognized with the Nobel Prize in Physics in 1987, opened a new world of opportunities for nuclear magnetic resonance (NMRs) and magnetic resonance imaging (MRIs) to move away from liquid cryogens. This discovery expands the application of high temperature superconducting (HTS) materials to fields beyond the chemical and medical industries, including electrical power grids, energy, and aerospace. The prototype 400-MHz cryofree HTS NMR spectrometer installed at Amgen's chemistry laboratory has been vital for a variety of applications such as structure analysis, reaction monitoring, and CASE-3D studies with RDCs. The spectrometer has been integrated with Amgen's chemistry and analytical workflows, providing pipeline project support in tandem with other Kinetic Analysis Platform technologies. The 400-MHz cryofree HTS NMR spectrometer, as the name implies, does not require liquid cryogens refills and has smaller footprint that facilitates installation into a chemistry laboratory fume hood, sharing the hood with a process chemistry reactor. Our evaluation of its performance for structural analysis with CASE-3D protocol and for reaction monitoring of Amgen's pipeline chemistry was successful. We envision that the HTS magnets would become part of the standard NMR and MRI spectrometers in the future. We believe that while the technology is being developed, there is room for all magnet options, including HTS, low temperature superconducting (LTS) magnets, and low field benchtop NMRs with permanent magnets, where utilization will be dependent on application type and costs.

2.
Magn Reson Chem ; 61(9-10): 530-543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37530063

RESUMO

High-temperature superconducting (HTS) materials have recently been incorporated into the construction of HTS cryogen-free magnets for nuclear magnetic resonance (NMR) spectroscopy. These HTS NMR spectrometers do not require liquid cryogens, thereby providing significant cost savings and facilitating easy integration into chemistry laboratories. However, the optimal performance of these HTS magnets against standard cryogen NMR magnets must be evaluated, especially with demanding modern NMR applications such as NMR in anisotropic media. The stability of the HTS magnets over time and their performance with complex pulse sequence experiments are the main unknown factors of this new technology. In this study, we evaluate the utility of our prototype 400 MHz cryogen-free power-driven HTS NMR spectrometer, installed in the fumehood of a chemistry laboratory, for stereochemical analysis of three commercial natural products (artemisinin, artemether, and dihydroartemisinin) via measurement of anisotropic NMR data, in particular, residual dipolar couplings. The accuracy of measurement of the anisotropic NMR data with the HTS magnet spectrometer is evaluated through the CASE-3D fitting protocol, as implemented in the Mestrenova-StereoFitter software program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA