Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Molecules ; 25(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272769

RESUMO

Biopolymer aerogels of appropriate open-porous morphology, nanotopology, surface chemistry, and mechanical properties can be promising cell scaffolding materials. Here, we report a facile approach towards the preparation of cellulose phosphate aerogels from two types of cellulosic source materials. Since high degrees of phosphorylation would afford water-soluble products inappropriate for cell scaffolding, products of low DSP (ca. 0.2) were prepared by a heterogeneous approach. Aiming at both i) full preservation of chemical integrity of cellulose during dissolution and ii) utilization of specific phase separation mechanisms upon coagulation of cellulose, TBAF·H2O/DMSO was employed as a non-derivatizing solvent. Sequential dissolution of cellulose phosphates, casting, coagulation, solvent exchange, and scCO2 drying afforded lightweight, nano-porous aerogels. Compared to their non-derivatized counterparts, cellulose phosphate aerogels are less sensitive towards shrinking during solvent exchange. This is presumably due to electrostatic repulsion and translates into faster scCO2 drying. The low DSP values have no negative impact on pore size distribution, specific surface (SBET ≤ 310 m2 g-1), porosity (Π 95.5-97 vol.%), or stiffness (Eρ ≤ 211 MPa cm3 g-1). Considering the sterilization capabilities of scCO2, existing templating opportunities to afford dual-porous scaffolds and the good hemocompatibility of phosphorylated cellulose, TBAF·H2O/DMSO can be regarded a promising solvent system for the manufacture of cell scaffolding materials.


Assuntos
Celulose/análogos & derivados , Celulose/química , Dimetil Sulfóxido/química , Géis/química , Compostos de Amônio Quaternário/química , Água/química , Biopolímeros/química , Nanoestruturas/química , Fosfatos/química , Porosidade , Solventes/química
2.
Soft Matter ; 15(41): 8372-8380, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31588953

RESUMO

Cellulose II aerogels are a highly porous class of biobased ultra-light-weight materials. They consist of interlinked networks of loosely aggregated cellulose fibrils. The latter typically have random orientation due to spontaneous phase separation triggered by addition of antisolvent to moleculardisperse cellulose solutions. Deceleration of phase separation has been recently proposed as a novel approach towards aerogels featuring preferred cellulose orientation. Here, we investigate the mechanical response of such oriented cellulose aerogels towards load up to 80% compression. Stress-strain curves were recorded and in situ small angle X-ray scattering (SAXS) was performed during compression test to obtain information about the structural alterations of the aerogel fibril networks on the nano-scale related to deformation. Using SAXS in addition, structural changes can be followed in much more detail than by recording stress-strain curves alone. Buckling and coalescence of fibers and a change in fibril orientation can be related to certain regimes in the stress-strain curve. If the loading axis is oriented parallel to the network orientation the aerogels show higher resilience towards the compression.


Assuntos
Celulose/química , Géis/química , Nanoestruturas/química , Anisotropia , Cristalização , Guanidinas/química , Conformação Molecular , Transição de Fase , Porosidade , Pressão , Solventes/química , Relação Estrutura-Atividade
3.
Biomacromolecules ; 19(11): 4411-4422, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30252450

RESUMO

Assembly of (bio)polymers into long-range anisotropic nanostructured gels and aerogels is of great interest in advanced material engineering since it enables directional tuning of properties, such as diffusivity, light, heat, and sound propagation, cell proliferation, and mechanical properties. Here we present an approach toward anisotropic cellulose II gels and aerogels that employs specific diffusion and phase separation phenomena occurring during decelerated infusion of an antisolvent into isotropic supercooled solutions of cellulose in an ionic liquid to effectuate supramolecular assembly of cellulose in anisotropic colloidal network structures. At the example of the distillable ionic liquid 1,1,3,3-tetramethylguanidinium acetate, the antisolvent ethanol, and spherocylindrical porous molds, we demonstrate that the proposed facile, environmental-benign and versatile route affords gels and aerogels whose specific anisotropic nanomorphology and properties reflect the preferred supramolecular cellulose orientation during phase separation, which is perpendicular to the direction of antisolvent diffusion. Comprehensive X-ray scattering experiments revealed that the (aero)gels are composed of an interconnected, fibrous, highly crystalline (CrI ≈ 72%), cellulose II with a cross-sectional Guinier radius of the struts of about 2.5 nm, and an order parameter gradient from about 0.1 to 0.2. The obtained gels and aerogels feature high specific surface areas (350-630 m2 g-1) and excellent mechanical properties like high toughness (up to 471 kJ m-3 for a 60% compression, ρB = 80 mg cm-3) and resilience (up to 13.4 kJ m-3, ρB = 65 mg cm-3).


Assuntos
Celulose/química , Congelamento , Géis/química , Líquidos Iônicos/química , Nanofibras/química , Polímeros/química , Solventes/química , Anisotropia , Transição de Fase , Porosidade , Condutividade Térmica
4.
Chemphyschem ; 17(21): 3359-3364, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27442186

RESUMO

A molecular spring formed by a hydrophobic metal-organic framework Cu2 (tebpz) (tebpz=3,3',5,5'-tetraethyl-4,4'-bipyrazolate) and water is presented. This nanoporous heterogeneous lyophobic system (HLS) has exceptional properties compared to numerous reported systems of such type in terms of stability, efficiency, and operating pressure. Mechanical and thermal energetic characteristics as well as stability of the system are discussed and compared in detail with those of other previously reported HLS.

5.
Cellulose (Lond) ; 23: 1949-1966, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340346

RESUMO

The impact of selected cellulose solvent systems based on the principal constituents tetrabutylammonium fluoride (TBAF), 1-ethyl-3-methyl-1H-imidazolium-acetate, N-methylmorpholine-N-oxide, or calcium thiocyanate octahydrate (CTO) on the properties of cellulose II aerogels prepared from these solvent systems has been investigated as a means towards tailoring cellulose aerogel properties with respect to specific applications. Cotton linters were used as representative plant cellulose. Cellulose was coagulated from solutions with comparable cellulose content, and dried with supercritical carbon dioxide after solvent exchange. The resulting bulk aerogels were comprehensively morphologically and mechanically tested to relate structure and mechanical properties. Different solvent systems caused considerable differences in the properties of the bulk samples, such as internal surface area (nitrogen sorption), morphology, porosity (He pycnometry, thermoporosimetry), and mechanical stability (compression testing). The results of SAXS, WAXS, and solid-state 13C NMR spectroscopy suggest that this is due to different mechanisms of cellulose self-assembling on the supramolecular and nanostructural level, respectively, as reflected by the broad ranges of cellulose crystallinity, fibril diameter, fractal dimension and skeletal density. Both solid state NMR and WAXS experiments confirmed the sole existence of the cellulose II allomorph for all aerogels, with crystallinity reaching a maximum of 46-50 % for CTO-derived aerogels. Generally, higher fibril diameter, degree of crystallinity, hence increased skeletal density were associated with good preservation of shape and dimension throughout conversion of lyogels to aerogels, and enhanced mechanical stability, but somewhat reduced specific surface area. Amorphous, yet highly rigid aerogels derived from TBAF/DMSO mixtures deviated from this trend, most likely due to their particular homogeneous and nanostructured morphology.

6.
Chemistry ; 20(34): 10732-6, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25042144

RESUMO

Mesoporous powders of transition-metal oxides, TiO2, ZrO2, HfO2, Nb2O5, and Ta2O5, pure from organic impurities were produced by a rapid single-step thermohydrolytic approach. The obtained materials display an impressively large active surface area and sharp pore-size distribution, being composed of partially coalesced uniform nanoparticles with crystalline cores and amorphous shells. They reveal extremely high adsorption capacity in removal of Cr(VI) anions from solutions (25.8 for TiO2, 73.0 for ZrO2, and 74.7 mg g(-1) for Nb2O5 in relation to the Cr2O7(2-) anion), making them very attractive as adsorbents in water remediation applications. The difference in adsorption capacities for the studied oxides may be explained by variation in surface hydration and surface-charge distribution.


Assuntos
Nanoestruturas/química , Elementos de Transição/química , Adsorção , Cromo/química , Cromo/isolamento & purificação , Nióbio/química , Óxidos/química , Porosidade , Titânio/química , Poluentes Químicos da Água/química , Zircônio/química
7.
Chemistry ; 19(51): 17439-44, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24243542

RESUMO

Uniformly mesoporous and thermally robust anatase nanorods were produced with quantitative yield by a simple and efficient one-step approach. The mechanism of this process was revealed by insertion of Eu(3+) cations from the reaction medium as luminescent probes. The obtained structure displays an unusually high porosity, an active surface area of about 300 m(2) g(-1) and a specific capacity of 167 mA h g(-1) at a C/3 rate, making it attractive as an anode electrode for Li-ion batteries. An additional attractive feature is its remarkable thermal stability; heating to 400 °C results in a decrease in the active surface area to a still relatively high value of 110 m(2) g(-1) with conservation of open mesoporosity. Thermal treatment at 800 °C or higher, however, causes transformation into a non-porous rutile monolith, as commonly observed with nanoscale titania.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanotubos/química , Titânio/química , Eletrodos , Európio/química , Corantes Fluorescentes/química , Íons/química , Porosidade , Temperatura
8.
Chemistry ; 19(3): 880-91, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23280706

RESUMO

Boronic acids (R-B(OH)(2)) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)(3)(-)) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C(4)H(9)-B(OH)(3)](2), which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid-state NMR spectroscopy ((1)H, (13)C, (11)B and (43)Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave--GIPAW--method). These data allow relationships between the geometry around the OH groups in boronates and the IR and (1)H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic-inorganic materials containing boronate building blocks.


Assuntos
Ácidos Borônicos/química , Teoria Quântica , Ligantes , Espectroscopia de Ressonância Magnética , Espectrofotometria Infravermelho
9.
Phys Chem Chem Phys ; 15(12): 4451-7, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23407667

RESUMO

Recently {lyophobic porous powders + liquid} systems were proposed to be used for nontraditional energy storage and conversion purposes. This article reports the experimental study of the mechanical behavior, within the pressure-volume (PV) diagram, of the {hydrophobic silicalite-1 + water} system in the temperature range 10-80 °C. Repeated recordings of PV-isotherms and thermal effects of the repulsive clathrate during successive compression-decompression runs were performed using scanning transitiometry. An unexpected steady decline in the intrusion-extrusion pressure and volume of embedded water was found during the forced (repeated) intrusion of water into the pores of silicalite-1 and its spontaneous extrusion at constant temperature. A discussion of possible reasons of unconventional behavior of these heterogeneous systems as well as a thermodynamic analysis is presented.

10.
Materials (Basel) ; 16(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37895672

RESUMO

Multifunctional substitutes for bone tissue engineering have gained significant interest in recent years in the aim to address the clinical challenge of treating large bone defects resulting from surgical procedures. Sol-gel mesoporous bioactive glass nanoparticles (MBGNs) have emerged as a promising solution due to their high reactivity and versatility. The effect of calcium content on MBGNs textural properties is well known. However, the relationship between their composition, textural properties, and reactivity has not yet been thoroughly discussed in existing studies, leading to divergent conclusions. In this study, pristine and copper-doped binary MGBNs were synthesized by a modified Stöber method, using a cationic surfactant as pore-templating agent. An opposite evolution between calcium content (12-26 wt%) and specific surface area (909-208 m2/g) was evidenced, while copper introduction (8.8 wt%) did not strongly affect the textural properties. In vitro bioactivity assessments conducted in simulated body fluid (SBF) revealed that the kinetics of hydroxyapatite (HAp) crystallization are mainly influenced by the specific surface area, while the composition primarily controls the quantity of calcium phosphate produced. The MBGNs exhibited a good bioactivity within 3 h, while Cu-MBGNs showed HAp crystallization after 48 h, along with a controlled copper release (up to 84 ppm at a concentration of 1 mg/mL). This comprehensive understanding of the interplay between composition, textural properties, and bioactivity, offers insights for the design of tailored MBGNs for bone tissue regeneration with additional biological and antibacterial effects.

11.
J Am Chem Soc ; 134(30): 12611-28, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22738329

RESUMO

Strontium is an element of fundamental importance in biomedical science. Indeed, it has been demonstrated that Sr(2+) ions can promote bone growth and inhibit bone resorption. Thus, the oral administration of Sr-containing medications has been used clinically to prevent osteoporosis, and Sr-containing biomaterials have been developed for implant and tissue engineering applications. The bioavailability of strontium metal cations in the body and their kinetics of release from materials will depend on their local environment. It is thus crucial to be able to characterize, in detail, strontium environments in disordered phases such as bioactive glasses, to understand their structure and rationalize their properties. In this paper, we demonstrate that (87)Sr NMR spectroscopy can serve as a valuable tool of investigation. First, the implementation of high-sensitivity (87)Sr solid-state NMR experiments is presented using (87)Sr-labeled strontium malonate (with DFS (double field sweep), QCPMG (quadrupolar Carr-Purcell-Meiboom-Gill), and WURST (wideband, uniform rate, and smooth truncation) excitation). Then, it is shown that GIPAW DFT (gauge including projector augmented wave density functional theory) calculations can accurately compute (87)Sr NMR parameters. Last and most importantly, (87)Sr NMR is used for the study of a (Ca,Sr)-silicate bioactive glass of limited Sr content (only ~9 wt %). The spectrum is interpreted using structural models of the glass, which are generated through molecular dynamics (MD) simulations and relaxed by DFT, before performing GIPAW calculations of (87)Sr NMR parameters. Finally, changes in the (87)Sr NMR spectrum after immersion of the glass in simulated body fluid (SBF) are reported and discussed.


Assuntos
Materiais Biocompatíveis/química , Vidro/química , Preparações Farmacêuticas/química , Estrôncio/análise , Espectroscopia de Ressonância Magnética/métodos , Malonatos/química , Modelos Moleculares , Isótopos de Estrôncio/análise
12.
J Biomed Mater Res B Appl Biomater ; 110(2): 422-430, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34288380

RESUMO

Fast acting topical hemostatic agents play a key role in hemorrhage control. Retarding fibrinolysis is also critical in improving coagulation, thereby expanding chances of survival. The purpose of the present work was to investigate the physical properties, loading capacity and hemostatic efficacy of newly developed nanoclay microsphere frameworks (NMFs) loaded with tranexamic acid (TA), as antifibrinolytic agent. Nanoclay compositions were prepared with increasing levels of TA. Results showed that TA was successfully incorporated into the nanoclay structure and released when solvated with ethanol. Both doped and undoped NMFs significantly decreased activated partial thromboplastin time and increased clot stiffness, which was attributed to significantly thinner fibrin fibers and a denser clot structure.


Assuntos
Hemostáticos , Ácido Tranexâmico , Fibrinólise , Hemostasia , Hemostáticos/farmacologia , Microesferas , Ácido Tranexâmico/farmacologia
13.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500858

RESUMO

This paper shows the possibility to detect the presence of grafted molecules on the surface of silicon nanowires with a wireless RF radar approach based on the measurement of the backscattered signal of a resonant structure on which the nanowires are deposited. The measured resonance frequency allows the determination of the intrinsic properties related to temperature and humidity variations, which can be related to the presence of the grafted molecules. Several functionalizations of nanowires have been realized and characterized. For the first time, an RF approach is used to detect significant differences related to the presence of grafted molecules on the surface of nanowires. In addition to detecting their presence, the obtained results show the potential of the radar approach to identify the type of functionalization of nanowires. A set of six different grafted molecules (including octadecyltrichlorosilane, ethynylpyrene, N3) was tested and correctly separated with the proposed approach. Various measurements of the same samples showed a good repeatability which made the approach compatible with the possibility of differentiating the molecules with each other by radar reading. Moreover, discussions about the application of such functionalizations are made to increase the sensibility of sensors using a radar approach.

14.
Biomater Sci ; 10(14): 3993-4007, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35723414

RESUMO

Primary bone cancers commonly involve surgery to remove the malignant tumor, complemented with a postoperative treatment to prevent cancer resurgence. Studies on magnetic hyperthermia, used as a single treatment or in synergy with chemo- or radiotherapy, have shown remarkable success in the past few decades. Multifunctional biomaterials with bone healing ability coupled with hyperthermia property could thus be of great interest to repair critical bone defects resulting from tumor resection. For this purpose, we designed superparamagnetic and bioactive nanoparticles (NPs) based on iron oxide cores (γ-Fe2O3) encapsulated in a bioactive glass (SiO2-CaO) shell. Nanometric heterostructures (122 ± 12 nm) were obtained through a two-step process: co-precipitation of 16 nm sized iron oxide NPs, followed by the growth of a bioactive glass shell via a modified Stöber method. Their bioactivity was confirmed by hydroxyapatite growth in simulated body fluid, and cytotoxicity assays showed they induced no significant death of human mesenchymal stem cells after 7 days. Calorimetric measurements were carried out under a wide range of alternating magnetic field amplitudes and frequencies, considering clinically relevant parameters, and some were made in viscous medium (agar) to mimic the implantation conditions. The experimental specific loss power was predictable with respect to the Linear Response Theory, and showed a maximal value of 767 ± 77 W gFe-1 (769 kHz, 23.9 kA m-1 in water). An interesting value of 166 ± 24 W gFe-1 was obtained under clinically relevant conditions (157 kHz, 23.9 kA m-1) for the heterostructures immobilized in agar. The good biocompatibility, bioactivity and heating ability suggest that these γ-Fe2O3@SiO2-CaO NPs are a promising biomaterial to be used as it is or included in a scaffold to heal bone defects resulting from bone tumor resection.


Assuntos
Neoplasias Ósseas , Hipertermia Induzida , Osteossarcoma , Ágar , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Neoplasias Ósseas/terapia , Vidro/química , Humanos , Fenômenos Magnéticos , Dióxido de Silício
15.
Geohealth ; 6(12): e2022GH000680, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36545343

RESUMO

Tungurahua volcano (Ecuador) intermittently emitted ash between 1999 and 2016, enduringly affecting the surrounding rural area and its population, but its health impact remains poorly documented. We aim to assess the respiratory health hazard posed by the 16-17 August 2006 most intense eruptive phase of Tungurahua. We mapped the spatial distribution of the health-relevant ash size fractions produced by the eruption in the area impacted by ash fallout. We quantified the mineralogy, composition, surface texture, and morphology of a respirable ash sample isolated by aerodynamic separation. We then assessed the cytotoxicity and pro-inflammatory potential of this respirable ash toward lung tissues in-vitro using A549 alveolar epithelial cells, by electron microscopy and biochemical assays. The eruption produced a high amount of inhalable and respirable ash (12.0-0.04 kg/m2 of sub-10 µm and 5.3-0.02 kg/m2 of sub-4 µm ash deposited). Their abundance and proportion vary greatly across the deposit within the first 20 km from the volcano. The respirable ash is characteristic of an andesitic magma and no crystalline silica is detected. Morphological features and surface textures are complex and highly variable, with few fibers observed. In-vitro experiments show that respirable volcanic ash is internalized by A549 cells and processed in the endosomal pathway, causing little cell damage, but resulting in changes in cell morphology and membrane texture. The ash triggers a weak pro-inflammatory response. These data provide the first understanding of the respirable ash hazard near Tungurahua and the extent to which it varies spatially in a fallout deposit.

16.
Langmuir ; 27(18): 11622-8, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21830800

RESUMO

The use of an inorganic perrhenate ligand in the structure of early-transition-metal alkoxide precursors permits to achieve uniform self-assembly of the primary nanoparticles produced by their hydrolysis. The latter has been carried out in a hydrocarbon reaction medium by the addition of water with vigorous stirring, either in the pure form or in solutions in parent alcohols. The self-assembly is guided by the surface charge enhanced by the presence of strongly coordinated anions as determined by zeta potential measurements. The aggregation process has been followed in real time by nanoparticle tracking analysis (NanoSight technique). The reaction products are spherical aggregates with a size that can be efficiently controlled through the polarity of the reaction medium. The produced nanobeads have been characterized by TEM, SEM-EDS, DLS, nitrogen adsorption, and FTIR. The coordination of metal centers has been investigated using EXAFS spectroscopy. The aggregates remain amorphous on thermal treatment of up to 700 °C (24 h treatment) but crystallize when treated at 1000 °C. This latter process is associated with the total loss of rhenium content and offers early-transition-metal oxides as products.


Assuntos
Nanosferas/química , Óxidos/química , Rênio/química , Álcoois/química , Hidrocarbonetos/química
17.
Nanomaterials (Basel) ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924658

RESUMO

Silicon nanowires are attractive materials from the point of view of their electrical properties or high surface-to-volume ratio, which makes them interesting for sensing applications. However, they can achieve a better performance by adjusting their surface properties with organic/inorganic compounds. This review gives an overview of the main techniques used to modify silicon nanowire surfaces as well as characterization techniques. A comparison was performed with the functionalization method developed, and some applications of modified silicon nanowires and their advantages on those non-modified are subsequently presented. In the final words, the future opportunities of functionalized silicon nanowires for chipless tag radio frequency identification (RFID) have been depicted.

18.
Materials (Basel) ; 14(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064435

RESUMO

Cytotoxicity and antibacterial properties associated with the dopant release of Cu-doped Biphasic Calcium Phosphate (BCP) powders, mainly composed of hydroxyapatite mixed with ß-tricalcium phosphate powders, were investigated. Twelve BCP ceramics were synthesized at three different sintering temperatures (600 °C, 900 °C and 1200 °C) and four copper doping rates (x = 0.0, 0.05, 0.10 and 0.20, corresponding to the stoichiometric amount of copper in Ca10Cux(PO4)6(OH)2-2xO2x). Cytotoxicity assessments of Cu-doped BCP powders, using MTT assay with human-Mesenchymal Stem Cells (h-MSCs), indicated no cytotoxicity and the release of less than 12 ppm of copper into the biological medium. The antibacterial activity of the powders was determined against both Gram-positive (methicillin-sensitive (MS) and methicillin resistant (MR) Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. The Cu-doped biomaterials exhibited a strong antibacterial activity against MSSA, MRSA and E. coli, releasing approximatively 2.5 ppm after 24 h, whereas 10 ppm were required to induce an antibacterial effect against P. aeruginosa. This study also demonstrated that the culture medium used during experiments can directly impact the antibacterial effect observed; only 4 ppm of Cu2+ were effective for killing all the bacteria in a 1:500 diluted TS medium, whereas 20 ppm were necessary to achieve the same result in a rich, non-diluted standard marrow cell culture medium.

19.
Int J Nanomedicine ; 16: 6049-6065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511905

RESUMO

PURPOSE: Healing of osteoporotic defects is challenging and requires innovative approaches to elicit molecular mechanisms promoting osteoblasts-osteoclasts coupling and bone homeostasis. METHODS: Cytocompatibility and biocompatibility of previously characterised nanocomposites, i.e Ca5(PO4)3OH/Fe3O4 (later called nHAp/IO) functionalised with microRNAs (nHAp/IO@miR-21/124) was tested. In vitro studies were performed using a direct co-culture system of MC3T3-E1 pre-osteoblast and 4B12 pre-osteoclasts. The analysis included determination of nanocomposite influence on cultures morphology (confocal imaging), viability and metabolic activity (Alamar Blue assay). Pro-osteogenic signals were identified at mRNA, miRNA and protein level with RT-qPCR, Western blotting and immunocytochemistry. Biocompatibility of biomaterials was tested using bilateral cranial defect performed on a senescence-accelerated mouse model, ie SAM/P6 and Balb/c. The effect of biomaterial on the process of bone healing was monitored using microcomputed tomography. RESULTS: The nanocomposites promoted survival and metabolism of bone cells, as well as enhanced functional differentiation of pre-osteoblasts MC3T3-E1 in co-cultures with pre-osteoclasts. Differentiation of MC3T3-E1 driven by nHAp/IO@miR-21/124 nanocomposite was manifested by improved extracellular matrix differentiation and up-regulation of pro-osteogenic transcripts, ie late osteogenesis markers. The nanocomposite triggered bone healing in a cranial defect model in SAM/P6 mice and was replaced by functional bone in Balb/c mice. CONCLUSION: This study demonstrates that the novel nanocomposite nHAp/IO can serve as a platform for therapeutic miRNA delivery. Obtained nanocomposite elicit pro-osteogenic signals, decreasing osteoclasts differentiation, simultaneously improving osteoblasts metabolism and their transition toward pre-osteocytes and bone mineralisation. The proposed scaffold can be an effective interface for in situ regeneration of osteoporotic bone, especially in elderly patients.


Assuntos
MicroRNAs , Osteoporose , Idoso , Animais , Diferenciação Celular , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos , MicroRNAs/genética , Osteoblastos , Osteogênese , Osteopontina/genética , Microtomografia por Raio-X
20.
Langmuir ; 26(12): 9809-17, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20230060

RESUMO

Hierarchically porous hybrid microparticles, strikingly reminiscent in their structure of the silica skeletons of single-cell algae, diatoms, but composed of titanium dioxide, and the chemically bound amphiphilic amino acids or small proteins can be prepared by a simple one-step biomimetic procedure, using hydrolysis of titanium alkoxides modified by these ligands. The growth of the hierarchical structure results from the conditions mimicking the growth of skeletons in real diatoms--the self-assembly of hydrolysis-generated titanium dioxide nanoparticles, templated by the microemulsion, originating from mixing the hydrocarbon solvent and water on action of amino acids as surfactants. The obtained microsize nanoparticle aggregates possess remarkable chemical and thermal stability and are promising substrates for applications in drug delivery and catalysis. They can be provided with pronounced surface chirality through application of chiral modifying ligands. They display also high selectivity in sorption of phosphorylated biomolecules or medicines as demonstrated by (1)H and (31)P NMR studies and by in vitro modeling using (32)P-marked ATP as a substrate. The release of the adsorbed model compounds in an inert medium is a very slow process directed by desorption kinetics. It is enhanced, however, noticeably in contact with biological fluids modeling those of the tissues suffering inflammation, which makes the produced material highly attractive for application in medical implants. The developed synthetic approach has been applied successfully also for the preparation of analogous hybrid microparticles based on zirconium dioxide or aluminum sesquioxide.


Assuntos
Biomimética , Metais/química , Nanoestruturas/química , Óxidos/síntese química , Catálise , Sistemas de Liberação de Medicamentos , Fosforilação , Porosidade , Titânio , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA