Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(6): 1179-1194.e15, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931245

RESUMO

The human brain undergoes rapid development at mid-gestation from a pool of neural stem and progenitor cells (NSPCs) that give rise to the neurons, oligodendrocytes, and astrocytes of the mature brain. Functional study of these cell types has been hampered by a lack of precise purification methods. We describe a method for prospectively isolating ten distinct NSPC types from the developing human brain using cell-surface markers. CD24-THY1-/lo cells were enriched for radial glia, which robustly engrafted and differentiated into all three neural lineages in the mouse brain. THY1hi cells marked unipotent oligodendrocyte precursors committed to an oligodendroglial fate, and CD24+THY1-/lo cells marked committed excitatory and inhibitory neuronal lineages. Notably, we identify and functionally characterize a transcriptomically distinct THY1hiEGFRhiPDGFRA- bipotent glial progenitor cell (GPC), which is lineage-restricted to astrocytes and oligodendrocytes, but not to neurons. Our study provides a framework for the functional study of distinct cell types in human neurodevelopment.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Humanos , Células-Tronco Neurais/metabolismo , Neurônios , Diferenciação Celular/fisiologia , Neuroglia/metabolismo , Encéfalo , Astrócitos
2.
Cell ; 186(14): 3111-3124.e13, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37348505

RESUMO

The gut microbiome modulates immune and metabolic health. Human microbiome data are biased toward industrialized populations, limiting our understanding of non-industrialized microbiomes. Here, we performed ultra-deep metagenomic sequencing on 351 fecal samples from the Hadza hunter-gatherers of Tanzania and comparative populations in Nepal and California. We recovered 91,662 genomes of bacteria, archaea, bacteriophages, and eukaryotes, 44% of which are absent from existing unified datasets. We identified 124 gut-resident species vanishing in industrialized populations and highlighted distinct aspects of the Hadza gut microbiome related to in situ replication rates, signatures of selection, and strain sharing. Industrialized gut microbes were found to be enriched in genes associated with oxidative stress, possibly a result of microbiome adaptation to inflammatory processes. This unparalleled view of the Hadza gut microbiome provides a valuable resource, expands our understanding of microbes capable of colonizing the human gut, and clarifies the extensive perturbation induced by the industrialized lifestyle.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Eucariotos , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica
3.
Cell ; 185(19): 3617-3636.e19, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36070752

RESUMO

Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1). We then used an iterative experimental process to fill open niches: germ-free mice were colonized with hCom1 and then challenged with a human fecal sample. We identified new species that engrafted following fecal challenge and added them to hCom1, yielding hCom2. In gnotobiotic mice, hCom2 exhibited increased stability to fecal challenge and robust colonization resistance against pathogenic Escherichia coli. Mice colonized by either hCom2 or a human fecal community are phenotypically similar, suggesting that this consortium will enable a mechanistic interrogation of species and genes on microbiome-associated phenotypes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Escherichia coli , Fezes , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Humanos , Camundongos
4.
Cell ; 182(5): 1232-1251.e22, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32822576

RESUMO

Lung cancer, the leading cause of cancer mortality, exhibits heterogeneity that enables adaptability, limits therapeutic success, and remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) of metastatic lung cancer was performed using 49 clinical biopsies obtained from 30 patients before and during targeted therapy. Over 20,000 cancer and tumor microenvironment (TME) single-cell profiles exposed a rich and dynamic tumor ecosystem. scRNA-seq of cancer cells illuminated targetable oncogenes beyond those detected clinically. Cancer cells surviving therapy as residual disease (RD) expressed an alveolar-regenerative cell signature suggesting a therapy-induced primitive cell-state transition, whereas those present at on-therapy progressive disease (PD) upregulated kynurenine, plasminogen, and gap-junction pathways. Active T-lymphocytes and decreased macrophages were present at RD and immunosuppressive cell states characterized PD. Biological features revealed by scRNA-seq were biomarkers of clinical outcomes in independent cohorts. This study highlights how therapy-induced adaptation of the multi-cellular ecosystem of metastatic cancer shapes clinical outcomes.


Assuntos
Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Linhagem Celular , Ecossistema , Humanos , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Linfócitos T/patologia , Microambiente Tumoral/genética
5.
Mol Cell ; 82(16): 3103-3118.e8, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35752172

RESUMO

The development of CRISPR-based barcoding methods creates an exciting opportunity to understand cellular phylogenies. We present a compact, tunable, high-capacity Cas12a barcoding system called dual acting inverted site array (DAISY). We combined high-throughput screening and machine learning to predict and optimize the 60-bp DAISY barcode sequences. After optimization, top-performing barcodes had ∼10-fold increased capacity relative to the best random-screened designs and performed reliably across diverse cell types. DAISY barcode arrays generated ∼12 bits of entropy and ∼66,000 unique barcodes. Thus, DAISY barcodes-at a fraction of the size of Cas9 barcodes-achieved high-capacity barcoding. We coupled DAISY barcoding with single-cell RNA-seq to recover lineages and gene expression profiles from ∼47,000 human melanoma cells. A single DAISY barcode recovered up to ∼700 lineages from one parental cell. This analysis revealed heritable single-cell gene expression and potential epigenetic modulation of memory gene transcription. Overall, Cas12a DAISY barcoding is an efficient tool for investigating cell-state dynamics.


Assuntos
Sistemas CRISPR-Cas , Código de Barras de DNA Taxonômico , Linhagem da Célula/genética , Código de Barras de DNA Taxonômico/métodos , Humanos , Aprendizado de Máquina , Filogenia
6.
Nature ; 619(7971): 860-867, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468622

RESUMO

Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.


Assuntos
Adenocarcinoma de Pulmão , Reprogramação Celular , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Células-Tronco , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Reprogramação Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
7.
Cell ; 155(5): 1178-87, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24267896

RESUMO

There are few substantive methods to measure the health of the immune system, and the connection between immune strength and the viral component of the microbiome is poorly understood. Organ transplant recipients are treated with posttransplant therapies that combine immunosuppressive and antiviral drugs, offering a window into the effects of immune modulation on the virome. We used sequencing of cell-free DNA in plasma to investigate drug-virome interactions in a cohort of organ transplant recipients (656 samples, 96 patients) and find that antivirals and immunosuppressants strongly affect the structure of the virome in plasma. We observe marked virome compositional dynamics at the onset of the therapy and find that the total viral load increases with immunosuppression, whereas the bacterial component of the microbiome remains largely unaffected. The data provide insight into the relationship between the human virome, the state of the immune system, and the effects of pharmacological treatment and offer a potential application of the virome state to predict immunocompetence.


Assuntos
Antivirais/uso terapêutico , Sangue/virologia , Transplante de Coração , Imunossupressores/uso terapêutico , Transplante de Pulmão , Vírus/isolamento & purificação , Adulto , Antibioticoprofilaxia , Sangue/microbiologia , Criança , DNA/sangue , DNA/genética , Humanos , Vírus/classificação
8.
Cell ; 155(3): 621-35, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24243019

RESUMO

Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead, Ascl1 recruits Brn2 to Ascl1 sites genome wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, a precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types.


Assuntos
Reprogramação Celular , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Redes Reguladoras de Genes , Neurônios/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Fibroblastos/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fatores do Domínio POU/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
9.
Nature ; 603(7900): 309-314, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236985

RESUMO

The ability to slow or reverse biological ageing would have major implications for mitigating disease risk and maintaining vitality1. Although an increasing number of interventions show promise for rejuvenation2, their effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. Here we performed single-cell RNA sequencing on 20 organs to reveal cell-type-specific responses to young and aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, haematopoietic stem cells and hepatocytes are among those cell types that are especially responsive. On the pathway level, young blood invokes new gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. We observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it in select cell types. Together, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.


Assuntos
Parabiose , Análise de Célula Única , Adipócitos , Envelhecimento/genética , Transporte de Elétrons/genética , Células-Tronco Hematopoéticas , Hepatócitos , Células-Tronco Mesenquimais , Mitocôndrias , Especificidade de Órgãos/genética , RNA-Seq , Rejuvenescimento
10.
Nature ; 602(7898): 689-694, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140405

RESUMO

Liquid biopsies that measure circulating cell-free RNA (cfRNA) offer an opportunity to study the development of pregnancy-related complications in a non-invasive manner and to bridge gaps in clinical care1-4. Here we used 404 blood samples from 199 pregnant mothers to identify and validate cfRNA transcriptomic changes that are associated with preeclampsia, a multi-organ syndrome that is the second largest cause of maternal death globally5. We find that changes in cfRNA gene expression between normotensive and preeclamptic mothers are marked and stable early in gestation, well before the onset of symptoms. These changes are enriched for genes specific to neuromuscular, endothelial and immune cell types and tissues that reflect key aspects of preeclampsia physiology6-9, suggest new hypotheses for disease progression and correlate with maternal organ health. This enabled the identification and independent validation of a panel of 18 genes that when measured between 5 and 16 weeks of gestation can form the basis of a liquid biopsy test that would identify mothers at risk of preeclampsia long before clinical symptoms manifest themselves. Tests based on these observations could help predict and manage who is at risk for preeclampsia-an important objective for obstetric care10,11.


Assuntos
Ácidos Nucleicos Livres , Diagnóstico Precoce , Pré-Eclâmpsia , RNA , Pressão Sanguínea , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Feminino , Humanos , Mães , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética , Gravidez , RNA/sangue , RNA/genética , Transcriptoma
11.
Nature ; 597(7875): 256-262, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34381212

RESUMO

Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.


Assuntos
Envelhecimento/patologia , Osso e Ossos/patologia , Senescência Celular , Inflamação/patologia , Nicho de Células-Tronco , Células-Tronco/patologia , Animais , Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea , Linhagem da Célula , Feminino , Consolidação da Fratura , Hematopoese , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Células Mieloides/citologia , Osteoclastos/citologia , Rejuvenescimento
12.
Nature ; 587(7835): 619-625, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208946

RESUMO

Although single-cell RNA sequencing studies have begun to provide compendia of cell expression profiles1-9, it has been difficult to systematically identify and localize all molecular cell types in individual organs to create a full molecular cell atlas. Here, using droplet- and plate-based single-cell RNA sequencing of approximately 75,000 human cells across all lung tissue compartments and circulating blood, combined with a multi-pronged cell annotation approach, we create an extensive cell atlas of the human lung. We define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 out of 45 previously known cell types and 14 previously unknown ones. This comprehensive molecular atlas identifies the biochemical functions of lung cells and the transcription factors and markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signalling interactions and immune cell homing; and identifies cell types that are directly affected by lung disease genes and respiratory viruses. By comparing human and mouse data, we identified 17 molecular cell types that have been gained or lost during lung evolution and others with substantially altered expression profiles, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions and interactions are achieved in development and tissue engineering and altered in disease and evolution.


Assuntos
Células/classificação , Células/metabolismo , Imunidade , Pulmão/citologia , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma/genética , Idoso , Animais , Atlas como Assunto , Biomarcadores , Comunicação Celular , Células/imunologia , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Pulmão/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de Retorno de Linfócitos/metabolismo , Transdução de Sinais , Células Estromais/metabolismo
13.
Nature ; 583(7817): 596-602, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669715

RESUMO

Ageing is the single greatest cause of disease and death worldwide, and understanding the associated processes could vastly improve quality of life. Although major categories of ageing damage have been identified-such as altered intercellular communication, loss of proteostasis and eroded mitochondrial function1-these deleterious processes interact with extraordinary complexity within and between organs, and a comprehensive, whole-organism analysis of ageing dynamics has been lacking. Here we performed bulk RNA sequencing of 17 organs and plasma proteomics at 10 ages across the lifespan of Mus musculus, and integrated these findings with data from the accompanying Tabula Muris Senis2-or 'Mouse Ageing Cell Atlas'-which follows on from the original Tabula Muris3. We reveal linear and nonlinear shifts in gene expression during ageing, with the associated genes clustered in consistent trajectory groups with coherent biological functions-including extracellular matrix regulation, unfolded protein binding, mitochondrial function, and inflammatory and immune response. Notably, these gene sets show similar expression across tissues, differing only in the amplitude and the age of onset of expression. Widespread activation of immune cells is especially pronounced, and is first detectable in white adipose depots during middle age. Single-cell RNA sequencing confirms the accumulation of T cells and B cells in adipose tissue-including plasma cells that express immunoglobulin J-which also accrue concurrently across diverse organs. Finally, we show how gene expression shifts in distinct tissues are highly correlated with corresponding protein levels in plasma, thus potentially contributing to the ageing of the systemic circulation. Together, these data demonstrate a similar yet asynchronous inter- and intra-organ progression of ageing, providing a foundation from which to track systemic sources of declining health at old age.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Regulação da Expressão Gênica , Especificidade de Órgãos/genética , Animais , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , Feminino , Cadeias J de Imunoglobulina/genética , Cadeias J de Imunoglobulina/metabolismo , Masculino , Camundongos , Plasmócitos/citologia , Plasmócitos/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA-Seq , Análise de Célula Única , Linfócitos T/citologia , Linfócitos T/metabolismo , Fatores de Tempo , Transcriptoma
14.
Nat Methods ; 19(6): 711-723, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35396487

RESUMO

Studies of genome regulation routinely use high-throughput DNA sequencing approaches to determine where specific proteins interact with DNA, and they rely on DNA amplification and short-read sequencing, limiting their quantitative application in complex genomic regions. To address these limitations, we developed directed methylation with long-read sequencing (DiMeLo-seq), which uses antibody-tethered enzymes to methylate DNA near a target protein's binding sites in situ. These exogenous methylation marks are then detected simultaneously with endogenous CpG methylation on unamplified DNA using long-read, single-molecule sequencing technologies. We optimized and benchmarked DiMeLo-seq by mapping chromatin-binding proteins and histone modifications across the human genome. Furthermore, we identified where centromere protein A localizes within highly repetitive regions that were unmappable with short sequencing reads, and we estimated the density of centromere protein A molecules along single chromatin fibers. DiMeLo-seq is a versatile method that provides multimodal, genome-wide information for investigating protein-DNA interactions.


Assuntos
Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Proteína Centromérica A/genética , Cromatina/genética , DNA/química , DNA/genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos
15.
Proc Natl Acad Sci U S A ; 119(29): e2203032119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858312

RESUMO

Colonial tunicates are marine organisms that possess multiple brains simultaneously during their colonial phase. While the cyclical processes of neurogenesis and neurodegeneration characterizing their life cycle have been documented previously, the cellular and molecular changes associated with such processes and their relationship with variation in brain morphology and individual (zooid) behavior throughout adult life remains unknown. Here, we introduce Botryllus schlosseri as an invertebrate model for neurogenesis, neural degeneration, and evolutionary neuroscience. Our analysis reveals that during the weekly colony budding (i.e., asexual reproduction), prior to programmed cell death and removal by phagocytes, decreases in the number of neurons in the adult brain are associated with reduced behavioral response and significant change in the expression of 73 mammalian homologous genes associated with neurodegenerative disease. Similarly, when comparing young colonies (1 to 2 y of age) to those reared in a laboratory for ∼20 y, we found that older colonies contained significantly fewer neurons and exhibited reduced behavioral response alongside changes in the expression of 148 such genes (35 of which were differentially expressed across both timescales). The existence of two distinct yet apparently related neurodegenerative pathways represents a novel platform to study the gene products governing the relationship between aging, neural regeneration and degeneration, and loss of nervous system function. Indeed, as a member of an evolutionary clade considered to be a sister group of vertebrates, this organism may be a fundamental resource in understanding how evolution has shaped these processes across phylogeny and obtaining mechanistic insight.


Assuntos
Evolução Biológica , Doenças Neurodegenerativas , Urocordados , Animais , Expressão Gênica , Doenças Neurodegenerativas/genética , Reprodução Assexuada , Urocordados/genética
16.
Proc Natl Acad Sci U S A ; 119(11): e2115285119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35238677

RESUMO

SignificanceMetagenomic pathogen sequencing offers an unbiased approach to characterizing febrile illness. In resource-scarce settings with high biodiversity, it is critical to identify disease-causing pathogens in order to understand burden and to prioritize efforts for control. Here, metagenomic next-generation sequencing (mNGS) characterization of the pathogen landscape in Cambodia revealed diverse vector-borne and zoonotic pathogens irrespective of age and gender as risk factors. Identification of key pathogens led to changes in national program surveillance. This study is a "real world" example of the use of mNGS surveillance of febrile individuals, executed in-country, to identify outbreaks of vector-borne, zoonotic, and other emerging pathogens in a resource-scarce setting.


Assuntos
Suscetibilidade a Doenças , Recursos em Saúde , Metagenoma , Metagenômica/métodos , Vigilância em Saúde Pública , Sudeste Asiático/epidemiologia , Camboja/epidemiologia , Feminino , Febre/epidemiologia , Febre/etiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Estudos Soroepidemiológicos
17.
Nature ; 564(7736): 425-429, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518860

RESUMO

Haematopoiesis is an essential process that evolved in multicellular animals. At the heart of this process are haematopoietic stem cells (HSCs), which are multipotent and self-renewing, and generate the entire repertoire of blood and immune cells throughout an animal's life1. Although there have been comprehensive studies on self-renewal, differentiation, physiological regulation and niche occupation in vertebrate HSCs, relatively little is known about the evolutionary origin and niches of these cells. Here we describe the haematopoietic system of Botryllus schlosseri, a colonial tunicate that has a vasculature and circulating blood cells, and interesting stem-cell biology and immunity characteristics2-8. Self-recognition between genetically compatible B. schlosseri colonies leads to the formation of natural parabionts with shared circulation, whereas incompatible colonies reject each other3,4,7. Using flow cytometry, whole-transcriptome sequencing of defined cell populations and diverse functional assays, we identify HSCs, progenitors, immune effector cells and an HSC niche, and demonstrate that self-recognition inhibits allospecific cytotoxic reactions. Our results show that HSC and myeloid lineage immune cells emerged in a common ancestor of tunicates and vertebrates, and also suggest that haematopoietic bone marrow and the B. schlosseri endostyle niche evolved from a common origin.


Assuntos
Hematopoese , Sistema Hematopoético/citologia , Mamíferos/sangue , Filogenia , Urocordados/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Citotoxicidade Imunológica , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Imunidade Celular , Isoantígenos/imunologia , Masculino , Mamíferos/anatomia & histologia , Células Mieloides/citologia , Células Mieloides/imunologia , Fagocitose/imunologia , Nicho de Células-Tronco , Transcriptoma/genética , Urocordados/anatomia & histologia , Urocordados/genética , Urocordados/imunologia
18.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911763

RESUMO

The ability to interrogate total RNA content of single cells would enable better mapping of the transcriptional logic behind emerging cell types and states. However, current single-cell RNA-sequencing (RNA-seq) methods are unable to simultaneously monitor all forms of RNA transcripts at the single-cell level, and thus deliver only a partial snapshot of the cellular RNAome. Here we describe Smart-seq-total, a method capable of assaying a broad spectrum of coding and noncoding RNA from a single cell. Smart-seq-total does not require splitting the RNA content of a cell and allows the incorporation of unique molecular identifiers into short and long RNA molecules for absolute quantification. It outperforms current poly(A)-independent total RNA-seq protocols by capturing transcripts of a broad size range, thus enabling simultaneous analysis of protein-coding, long-noncoding, microRNA, and other noncoding RNA transcripts from single cells. We used Smart-seq-total to analyze the total RNAome of human primary fibroblasts, HEK293T, and MCF7 cells, as well as that of induced murine embryonic stem cells differentiated into embryoid bodies. By analyzing the coexpression patterns of both noncoding RNA and mRNA from the same cell, we were able to discover new roles of noncoding RNA throughout essential processes, such as cell cycle and lineage commitment during embryonic development. Moreover, we show that independent classes of short-noncoding RNA can be used to determine cell-type identity.


Assuntos
RNA/classificação , RNA/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única , Animais , Células-Tronco Embrionárias/metabolismo , Fibroblastos , Regulação da Expressão Gênica , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Células MCF-7 , Camundongos
19.
Nature ; 534(7607): 391-5, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27281220

RESUMO

Direct lineage reprogramming represents a remarkable conversion of cellular and transcriptome states. However, the intermediate stages through which individual cells progress during reprogramming are largely undefined. Here we use single-cell RNA sequencing at multiple time points to dissect direct reprogramming from mouse embryonic fibroblasts to induced neuronal cells. By deconstructing heterogeneity at each time point and ordering cells by transcriptome similarity, we find that the molecular reprogramming path is remarkably continuous. Overexpression of the proneural pioneer factor Ascl1 results in a well-defined initialization, causing cells to exit the cell cycle and re-focus gene expression through distinct neural transcription factors. The initial transcriptional response is relatively homogeneous among fibroblasts, suggesting that the early steps are not limiting for productive reprogramming. Instead, the later emergence of a competing myogenic program and variable transgene dynamics over time appear to be the major efficiency limits of direct reprogramming. Moreover, a transcriptional state, distinct from donor and target cell programs, is transiently induced in cells undergoing productive reprogramming. Our data provide a high-resolution approach for understanding transcriptome states during lineage differentiation.


Assuntos
Reprogramação Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular/genética , Linhagem da Célula/genética , Transdiferenciação Celular/genética , Embrião de Mamíferos/citologia , Perfilação da Expressão Gênica , Inativação Gênica , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fatores do Domínio POU/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Transgenes/genética
20.
BMC Public Health ; 22(1): 456, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255849

RESUMO

BACKGROUND: During the COVID-19 pandemic within the United States, much of the responsibility for diagnostic testing and epidemiologic response has relied on the action of county-level departments of public health. Here we describe the integration of genomic surveillance into epidemiologic response within Humboldt County, a rural county in northwest California. METHODS: Through a collaborative effort, 853 whole SARS-CoV-2 genomes were generated, representing ~58% of the 1,449 SARS-CoV-2-positive cases detected in Humboldt County as of March 12, 2021. Phylogenetic analysis of these data was used to develop a comprehensive understanding of SARS-CoV-2 introductions to the county and to support contact tracing and epidemiologic investigations of all large outbreaks in the county. RESULTS: In the case of an outbreak on a commercial farm, viral genomic data were used to validate reported epidemiologic links and link additional cases within the community who did not report a farm exposure to the outbreak. During a separate outbreak within a skilled nursing facility, genomic surveillance data were used to rule out the putative index case, detect the emergence of an independent Spike:N501Y substitution, and verify that the outbreak had been brought under control. CONCLUSIONS: These use cases demonstrate how developing genomic surveillance capacity within local public health departments can support timely and responsive deployment of genomic epidemiology for surveillance and outbreak response based on local needs and priorities.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Busca de Comunicante , Surtos de Doenças , Genômica , Humanos , Pandemias , Filogenia , Vigilância em Saúde Pública , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA