RESUMO
Anthropogenic noise underwater is on the rise and may affect aquatic animals of marine and freshwater ecosystems. Many recent studies concern some sort of impact assessment of a single species. Few studies addressed the noise impact on species interactions underwater, whereas there are some studies that address community-level impact but only on land in air. Key processes such as predator-prey or competitor interactions may be affected by the masking of auditory cues, noise-related disturbance, or attentional interference. Noise-associated changes in these interactions can cause shifts in species abundance and modify communities, leading to fundamental ecosystem changes. To gain further insight into the mechanism and generality of earlier findings, we investigated the impact on both a predator and a prey species in captivity, zebrafish (Danio rerio) preying on waterfleas (Daphnia magna).
Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Ruído , Animais , Daphnia/fisiologia , Humanos , Densidade Demográfica , Especificidade da Espécie , Peixe-Zebra/fisiologiaRESUMO
Anthropogenic sounds come in different forms, varying not only in amplitude and frequency spectrum but also in temporal structure. Although fish are sensitive to the temporal characteristics of sound, little is known about how their behavior is affected by anthropogenic sounds of different temporal patterns. We investigated this question using groups of Dicentrarchus labrax (European sea bass) in an outdoor basin. Our data revealed that the temporal pattern of sound exposure is important in noise impact assessments.
Assuntos
Bass/fisiologia , Comportamento Animal/fisiologia , Ruído , Animais , Exposição Ambiental , Natação/fisiologia , Fatores de TempoRESUMO
Auditory sensitivity in fish serves various important functions, but also makes fish susceptible to noise pollution. Human-generated sounds may affect behavioral patterns of fish, both in natural conditions and in captivity. Fish are often kept for consumption in aquaculture, on display in zoos and hobby aquaria, and for medical sciences in research facilities, but little is known about the impact of ambient sounds in fish tanks. In this study, we conducted two indoor exposure experiments with zebrafish (Danio rerio). The first experiment demonstrated that exposure to moderate sound levels (112 dB re 1 µPa) can affect the swimming behavior of fish by changing group cohesion, swimming speed and swimming height. Effects were brief for both continuous and intermittent noise treatments. In the second experiment, fish could influence exposure to higher sound levels by swimming freely between an artificially noisy fish tank (120-140 dB re 1 µPa) and another with ambient noise levels (89 dB re 1 µPa). Despite initial startle responses, and a brief period in which many individuals in the noisy tank dived down to the bottom, there was no spatial avoidance or noise-dependent tank preference at all. The frequent exchange rate of about 60 fish passages per hour between tanks was not affected by continuous or intermittent exposures. In conclusion, small groups of captive zebrafish were able to detect sounds already at relatively low sound levels and adjust their behavior to it. Relatively high sound levels were at least at the on-set disturbing, but did not lead to spatial avoidance. Further research is needed to show whether zebrafish are not able to avoid noisy areas or just not bothered. Quantitatively, these data are not directly applicable to other fish species or other fish tanks, but they do indicate that sound exposure may affect fish behavior in any captive condition.