RESUMO
OBJECTIVE: Fragile X premutation carriers are reported to have increased neuropsychiatric problems, and thus the term fragile X-associated neuropsychiatric disorders (FXAND) has been proposed. Unfortunately, published prevalence estimates of these phenomena are inconsistent. This systematic review clarified this issue by reviewing both fragile X premutation prevalence in patients with neurodevelopmental disorders and psychiatric disorder prevalence in premutation carriers without fragile X-associated tremor/ataxia syndrome (FXTAS). Average prevalence was derived from studies that used semistructured clinical interviews, diagnostic criteria, and validated rating scales. METHODS: Forty-six studies were reviewed. The rate of fragile X premutation in neurodevelopmental disorders was assessed from five studies. Probands with neurodevelopmental disorders were more likely than those in the general population to be premutation carriers. The rate of psychiatric disorders in premutation carriers was assessed from five studies for neurodevelopmental, 13 studies for mood, 12 studies for anxiety, and two studies for psychotic disorders. The phenotype and sex distribution among premutation carriers were similar to those with fragile X syndrome. RESULTS: Compared to control group and general population estimates, the most prevalent psychiatric disorders were neurodevelopmental disorders, anxiety disorders, and bipolar II disorder. Psychiatric disorders were also more common in males. Most studies relied only on past medical history to define the prevalence of psychiatric disorders, yielding variability in results. CONCLUSIONS: Future studies are needed to avoid bias by identifying cohorts from population-based sampling, to describe cohort demographic characteristics to elucidate differences in age and sex, and to prioritize the use of validated psychiatric assessment methods.
Assuntos
Síndrome do Cromossomo X Frágil , Transtornos Psicóticos , Masculino , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/epidemiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Transtornos de Ansiedade , Transtornos Psicóticos/complicaçõesRESUMO
Quantitative susceptibility mapping (QSM) is an MRI post-processing technique that produces spatially resolved magnetic susceptibility maps from phase data. However, the traditional QSM reconstruction pipeline involves multiple non-trivial steps, including phase unwrapping, background field removal, and dipole inversion. These intermediate steps not only increase the reconstruction time but accumulates errors. This study aims to overcome existing limitations by developing a Laplacian-of-Trigonometric-functions (LoT) enhanced deep neural network for near-instant quantitative field and susceptibility mapping (i.e., iQFM and iQSM) from raw MRI phase data. The proposed iQFM and iQSM methods were compared with established reconstruction pipelines on simulated and in vivo datasets. In addition, experiments on patients with intracranial hemorrhage and multiple sclerosis were also performed to test the generalization of the proposed neural networks. The proposed iQFM and iQSM methods in healthy subjects yielded comparable results to those involving the intermediate steps while dramatically improving reconstruction accuracies on intracranial hemorrhages with large susceptibilities. High susceptibility contrast between multiple sclerosis lesions and healthy tissue was also achieved using the proposed methods. Comparative studies indicated that the most significant contributor to iQFM and iQSM over conventional multi-step methods was the elimination of traditional Laplacian unwrapping. The reconstruction time on the order of minutes for traditional approaches was shortened to around 0.1 s using the trained iQFM and iQSM neural networks.
Assuntos
Encéfalo , Esclerose Múltipla , Algoritmos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Hemorragias Intracranianas , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Redes Neurais de ComputaçãoRESUMO
Depression and apathy can be significant problems in progressive supranuclear palsy (PSP). Using PRISMA guidelines, this systematic review examined prevalence estimates for depression and apathy in PSP, and, how different methods of definition may influence results. 29 studies meeting inclusion/exclusion criteria were identified: 12 on depression, 9 on apathy, and 8 on both. Studies were stratified according to whether a diagnostic criteria, rating scale or screening question methodology was employed. The weighted mean prevalence was 59.7% for depression (sample size = 473) and 58.3% for apathy (sample size = 858). Results for depression using diagnostic criteria or rating scales were similar whereas screening questions were associated with considerable inconsistency. Depression prevalence appeared to be influenced by apathy but not somatic symptoms. Most apathy studies relied only on a screening question method. Depression and apathy are common in PSP but there is a need for consensus on how they are defined (both tools and cut-off scores). In particular, more studies probing apathy in greater detail than a simple screening question are required.
Assuntos
Apatia , Paralisia Supranuclear Progressiva , Depressão , Humanos , Paralisia Supranuclear Progressiva/complicaçõesRESUMO
Metabolic derangements following traumatic brain injury are poorly characterized. In this single-centre observational cohort study we combined 18F-FDG and multi-tracer oxygen-15 PET to comprehensively characterize the extent and spatial pattern of metabolic derangements. Twenty-six patients requiring sedation and ventilation with intracranial pressure monitoring following head injury within a Neurosciences Critical Care Unit, and 47 healthy volunteers were recruited. Eighteen volunteers were excluded for age over 60 years (n = 11), movement-related artefact (n = 3) or physiological instability during imaging (n = 4). We measured cerebral blood flow, blood volume, oxygen extraction fraction, and 18F-FDG transport into the brain (K1) and its phosphorylation (k3). We calculated oxygen metabolism, 18F-FDG influx rate constant (Ki), glucose metabolism and the oxygen/glucose metabolic ratio. Lesion core, penumbra and peri-penumbra, and normal-appearing brain, ischaemic brain volume and k3 hotspot regions were compared with plasma and microdialysis glucose in patients. Twenty-six head injury patients, median age 40 years (22 male, four female) underwent 34 combined 18F-FDG and oxygen-15 PET at early, intermediate, and late time points (within 24 h, Days 2-5, and Days 6-12 post-injury; n = 12, 8, and 14, respectively), and were compared with 20 volunteers, median age 43 years (15 male, five female) who underwent oxygen-15, and nine volunteers, median age 56 years (three male, six female) who underwent 18F-FDG PET. Higher plasma glucose was associated with higher microdialysate glucose. Blood flow and K1 were decreased in the vicinity of lesions, and closely related when blood flow was <25 ml/100 ml/min. Within normal-appearing brain, K1 was maintained despite lower blood flow than volunteers. Glucose utilization was globally reduced in comparison with volunteers (P < 0.001). k3 was variable; highest within lesions with some patients showing increases with blood flow <25 ml/100 ml/min, but falling steeply with blood flow lower than 12 ml/100 ml/min. k3 hotspots were found distant from lesions, with k3 increases associated with lower plasma glucose (Rho -0.33, P < 0.001) and microdialysis glucose (Rho -0.73, P = 0.02). k3 hotspots showed similar K1 and glucose metabolism to volunteers despite lower blood flow and oxygen metabolism (P < 0.001, both comparisons); oxygen extraction fraction increases consistent with ischaemia were uncommon. We show that glucose delivery was dependent on plasma glucose and cerebral blood flow. Overall glucose utilization was low, but regional increases were associated with reductions in glucose availability, blood flow and oxygen metabolism in the absence of ischaemia. Clinical management should optimize blood flow and glucose delivery and could explore the use of alternative energy substrates.
Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Circulação Cerebrovascular/fisiologia , Glucose/metabolismo , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de PósitronsRESUMO
BACKGROUND: Sporadic degenerative ataxia patients fall into 2 major groups: multiple system atrophy with predominant cerebellar ataxia (MSA-C) and sporadic adult-onset ataxia (SAOA). Both groups have cerebellar volume loss, but little is known about the differential involvement of gray and white matter in MSA-C when compared with SAOA. OBJECTIVES: The objective of this study was to identify structural differences of brain gray and white matter between both patient groups. METHODS: We used magnetic resonance imaging to acquire T1-weighted images and diffusion tensor images from 12 MSA-C patients, 31 SAOA patients, and 55 healthy controls. Magnetic resonance imaging data were analyzed with voxel-based-morphometry, tract-based spatial statistics, and tractography-based regional diffusion tensor images analysis. RESULTS: Whole-brain and cerebellar-focused voxel-based-morphometry analysis showed gray matter volume loss in both patient groups when compared with healthy controls, specifically in the cerebellar areas subserving sensorimotor functions. When compared with controls, the SAOA and MSA-C patients showed white matter loss in the cerebellum, whereas brainstem white matter was reduced only in the MSA-C patients. The tract-based spatial statistics revealed reduced fractional anisotropy within the pons and cerebellum in the MSA-C patients both in comparison with the SAOA patients and healthy controls. In addition, tractography-based regional analysis showed reduced fractional anisotropy along the corticospinal tracts in MSA-C, but not SAOA. CONCLUSION: Although in our cohort extent and distribution of gray and white matter loss were similar between the MSA-C and SAOA patients, magnetic resonance imaging data showed prominent microstructural white matter involvement in the MSA-C patients that was not present in the SAOA patients. Our findings highlight the significance of microstructural white matter changes in the differentiation between both conditions. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Atrofia de Múltiplos Sistemas , Substância Branca , Adulto , Atrofia/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologiaRESUMO
BACKGROUND: We present one patient with an initial diagnosis of Guillain-Barré syndrome (GBS) and one with Charcot-Marie-Tooth disease (CMT) type 1A. METHODS: Both patients underwent ankle tibial nerve fusion-imaging of high-resolution ultrasound (HRUS) with 7T MR neurography (MRN). RESULTS: In GBS, the nerve was enlarged, T2-hyperintense, and showed increased vascularization 21 months after symptom onset. In CMT1A, the enlarged nerve was T2-isointense with normal endoneurial blood flow. CONCLUSIONS: We demonstrate the utility of 7T-MRN-HRUS-fusion-imaging. In GBS, there was evidence of ongoing inflammation resulting in a changed diagnosis to acute-onset chronic demyelinating polyradiculoneuropathy and maintenance of immunotherapy. By MRN-HRUS-fusion, patients with presumed peripheral axonal degeneration could be shown to display imaging markers associated with peripheral nervous system inflammation. Thus, more accurate identification of a treatable inflammatory component may become possible.
Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Nervo Tibial/diagnóstico por imagem , Ultrassonografia/métodos , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Feminino , Síndrome de Guillain-Barré/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Fluxo Sanguíneo Regional/fisiologia , Nervo Tibial/irrigação sanguínea , Adulto JovemRESUMO
Down's syndrome is a chromosomal disorder that invariably results in both intellectual disability and Alzheimer's disease neuropathology. However, only a limited number of studies to date have investigated intrinsic brain network organisation in people with Down's syndrome, none of which addressed the links between functional connectivity and Alzheimer's disease. In this cross-sectional study, we employed 11 C-Pittsburgh Compound-B (PiB) positron emission tomography in order to group participants with Down's syndrome based on the presence of fibrillar beta-amyloid neuropathology. We also acquired resting state functional magnetic resonance imaging data to interrogate the connectivity of the default mode network; a large-scale system with demonstrated links to Alzheimer's disease. The results revealed widespread positive connectivity of the default mode network in people with Down's syndrome (n = 34, ages 30-55, median age = 43.5) and a stark lack of anti-correlation. However, in contrast to typically developing controls (n = 20, ages 30-55, median age = 43.5), the Down's syndrome group also showed significantly weaker connections in localised frontal and posterior brain regions. Notably, while a comparison of the PiB-negative Down's syndrome group (n = 19, ages 30-48, median age = 41.0) to controls suggested that alterations in default mode connectivity to frontal brain regions are related to atypical development, a comparison of the PiB-positive (n = 15, ages 39-55, median age = 48.0) and PiB-negative Down's syndrome groups indicated that aberrant connectivity in posterior cortices is associated with the presence of Alzheimer's disease neuropathology. Such distinct profiles of altered connectivity not only further our understanding of the brain physiology that underlies these two inherently linked conditions but may also potentially provide a biomarker for future studies of neurodegeneration in people with Down's syndrome.
Assuntos
Doença de Alzheimer/fisiopatologia , Conectoma , Síndrome de Down/fisiopatologia , Adulto , Doença de Alzheimer/diagnóstico por imagem , Amiloide , Compostos de Anilina , Radioisótopos de Carbono , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Estudos Transversais , Síndrome de Down/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , TiazóisRESUMO
Background The differential diagnosis of progressive supranuclear palsy (PSP) and Lewy body disorders, which include Parkinson disease and dementia with Lewy bodies, is often challenging due to the overlapping symptoms. Purpose To develop a diagnostic tool based on diffusion tensor imaging (DTI) to distinguish between PSP and Lewy body disorders at the individual-subject level. Materials and Methods In this retrospective study, skeletonized DTI metrics were extracted from two independent data sets: the discovery cohort from the Swedish BioFINDER study and the validation cohort from the Penn Frontotemporal Degeneration Center (data collected between 2010 and 2018). Based on previous neuroimaging studies and neuropathologic evidence, a combination of regions hypothesized to be sensitive to pathologic features of PSP were identified (ie, the superior cerebellar peduncle and frontal white matter) and fractional anisotropy (FA) was used to compute an FA score for each individual. Classification performances were assessed by using logistic regression and receiver operating characteristic analysis. Results In the discovery cohort, 16 patients with PSP (mean age ± standard deviation, 73 years ± 5; eight women, eight men), 34 patients with Lewy body disorders (mean age, 71 years ± 6; 14 women, 20 men), and 44 healthy control participants (mean age, 66 years ± 8; 26 women, 18 men) were evaluated. The FA score distinguished between clinical PSP and Lewy body disorders with an area under the curve of 0.97 ± 0.04, a specificity of 91% (31 of 34), and a sensitivity of 94% (15 of 16). In the validation cohort, 34 patients with PSP (69 years ± 7; 22 women, 12 men), 25 patients with Lewy body disorders (70 years ± 7; nine women, 16 men), and 32 healthy control participants (64 years ± 7; 22 women, 10 men) were evaluated. The accuracy of the FA score was confirmed (area under the curve, 0.96 ± 0.04; specificity, 96% [24 of 25]; and sensitivity, 85% [29 of 34]). Conclusion These cross-validated findings lay the foundation for a clinical test to distinguish progressive supranuclear palsy from Lewy body disorders. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Shah in this issue.
Assuntos
Imagem de Tensor de Difusão/métodos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Sinucleinopatias/diagnóstico por imagem , Idoso , Anisotropia , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Estudos Retrospectivos , Sensibilidade e Especificidade , SuéciaRESUMO
Purpose To investigate the whole-brain landscape of iron-related abnormalities in amyotrophic lateral sclerosis (ALS) by using the in vivo MRI technique of quantitative susceptibility mapping (QSM). Materials and Methods For this prospective study, 28 patients with ALS (mean age, 61 years; age range, 43-77 years; 18 men [mean age, 61 years; range, 43-77 years] and 10 women [mean age, 61 years; range, 47-74 years]) recruited between January 17, 2014, and September 4, 2015, and 39 matched control subjects (mean age, 61 years; age range, 39-77 years; 24 men [mean age, 62 years; range, 39-77 years] and 15 women [mean age, 59 years; range, 39-73 years]) were examined by using structural and susceptibility 3.0-T MRI techniques. Group data were cross sectionally compared with family-wise error (FWE) corrections by using voxel-based morphometry (random-field theory), cortical thickness analysis (Monte Carlo simulated), subcortical volumetry (Bonferroni-corrected Wilcoxon rank-sum testing), and QSM analysis (cluster-enhanced whole-brain permutation testing and Bonferroni-corrected rank-sum testing in regions of interest). In patients with ALS, a potential relationship between diffusion and susceptibility measurements in the corticospinal tracts (CSTs) was also examined by using Spearman rank-correlation tests. Results Conventional structural measures failed to identify atrophy in the present cohort (FWE P > .05). However, QSM identified several whole-brain abnormalities (FWE P < .05) in ALS. Regionally, higher susceptibility (expressed as means in parts per million ± standard errors of the mean) was confirmed in the motor cortex (ALS = 0.0188 ± 0.0003, control = 0.0173 ± 0.0003; P < .001), the left substantia nigra (ALS = 0.127 ± 0.004, control = 0.113 ± 0.003; P = .008), the right substantia nigra (ALS = 0.141 ± 0.005, control = 0.120 ± 0.003; P < .001), the globus pallidus (ALS = 0.086 ± 0.003, control = 0.075 ± 0.002; P = .003), and the red nucleus (ALS = 0.115 ± 0.004, control = 0.098 ± 0.003; P < .001). Lower susceptibility was found in CST white matter (ALS = -0.047 ± 0.001, control = -0.043 ± 0.001; P = .01). Nigral and pallidal QSM values were cross correlated in ALS (ρ2 = 0.42, P < .001), a phenomenon visually traceable in many individual patients. QSM in the CST in ALS also correlated with diffusion-tensor metrics in this tract (ρ2 = 0.25, P = .007). Conclusion Whole-brain MRI quantitative susceptibility mapping analysis is sensitive to tissue alterations in amyotrophic lateral sclerosis that may be relevant to pathologic changes. © RSNA, 2018.
Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Química Encefálica/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
AIM: To assess the clinical utility of FDG-PET as a diagnostic aid for differentiating Alzheimer's disease (AD; both typical and atypical forms), dementia with Lewy bodies (DLB), frontotemporal lobar degeneration (FTLD), vascular dementia (VaD) and non-degenerative pseudodementia. METHODS: A comprehensive literature search was conducted using the PICO model to extract evidence from relevant studies. An expert panel then voted on six different diagnostic scenarios using the Delphi method. RESULTS: The level of empirical study evidence for the use of FDG-PET was considered good for the discrimination of DLB and AD; fair for discriminating FTLD from AD; poor for atypical AD; and lacking for discriminating DLB from FTLD, AD from VaD, and for pseudodementia. Delphi voting led to consensus in all scenarios within two iterations. Panellists supported the use of FDG-PET for all PICOs-including those where study evidence was poor or lacking-based on its negative predictive value and on the assistance it provides when typical patterns of hypometabolism for a given diagnosis are observed. CONCLUSION: Although there is an overall lack of evidence on which to base strong recommendations, it was generally concluded that FDG-PET has a diagnostic role in all scenarios. Prospective studies targeting diagnostically uncertain patients for assessing the added value of FDG-PET would be highly desirable.
Assuntos
Demência/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Doença de Alzheimer , Diagnóstico Diferencial , Fluordesoxiglucose F18 , Humanos , Doença por Corpos de Lewy , Estudos ProspectivosRESUMO
INTRODUCTION: We aimed to investigate whether sonographic peripheral cross-sectional nerve area (CSA) and progranulin (PGRN), a neuritic growth factor, are related to each other and whether they interact to predict clinical and paraclinical measures in amyotrophic lateral sclerosis (ALS). METHODS: We included 55 ALS patients who had forearm median and ulnar nerve CSA, cerebrospinal fluid (CSF) PGRN, and serum PGRN measures available. CSF PGRN was normalized against the CSF / serum albumin ratio (Qalb ). Using age, sex, height, and weight adjusted general linear models, we examined CSA × CSF PGRN interaction effects on various measures. RESULTS: There was a medium-effect size inverse relationship between CSA and CSF PGRN, but not between CSA and serum PGRN. Lower CSA values together with higher CSF PGRN levels were linked to smaller motor amplitudes. DISCUSSION: In ALS, the constellation of peripheral nerve atrophy together with higher CSF PGRN levels indicates pronounced axonal damage. Muscle Nerve 57: 273-278, 2018.
Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Axônios/ultraestrutura , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Progranulinas/líquido cefalorraquidiano , Adulto , Idoso , Anatomia Transversal , Atrofia , Biomarcadores , Estudos Transversais , Fenômenos Eletrofisiológicos , Feminino , Antebraço/diagnóstico por imagem , Antebraço/inervação , Humanos , Masculino , Nervo Mediano/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Prospectivos , Nervo Ulnar/diagnóstico por imagem , UltrassonografiaRESUMO
Although iron-mediated oxidative stress has been proposed as a potential pathomechanism in Parkinson's disease, the global distribution of iron accumulation in Parkinson's disease has not yet been elucidated. This study used a new magnetic resonance imaging contrast, quantitative susceptibility mapping, and state-of-the-art methods to map for the first time the whole-brain landscape of magnetostatic alterations as a surrogate for iron level changes in n = 25 patients with idiopathic Parkinson's disease versus n = 50 matched controls. In addition to whole-brain analysis, a regional study including sub-segmentation of the substantia nigra into dorsal and ventral regions and qualitative assessment of susceptibility maps in single subjects were also performed. The most remarkable basal ganglia effect was an apparent magnetic susceptibility increase-consistent with iron deposition-in the dorsal substantia nigra, though an effect was also observed in ventral regions. Increased bulk susceptibility, additionally, was detected in rostral pontine areas and in a cortical pattern tightly concordant with known Parkinson's disease distributions of α-synuclein pathology. In contrast, the normally iron-rich cerebellar dentate nucleus returned a susceptibility reduction suggesting decreased iron content. These results are in agreement with previous post-mortem studies in which iron content was evaluated in specific regions of interest; however, extensive neocortical and cerebellar changes constitute a far more complex pattern of iron dysregulation than was anticipated. Such findings also stand in stark contrast to the lack of statistically significant group change using conventional magnetic resonance imaging methods namely voxel-based morphometry, cortical thickness analysis, subcortical volumetry and tract-based diffusion tensor analysis; confirming the potential of whole-brain quantitative susceptibility mapping as an in vivo biomarker in Parkinson's disease.
Assuntos
Núcleos Cerebelares/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Idoso , Núcleos Cerebelares/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico por imagem , Substância Negra/diagnóstico por imagemRESUMO
Disruption of iron homeostasis as a consequence of aging is thought to cause iron levels to increase, potentially promoting oxidative cellular damage. Therefore, understanding how this process evolves through the lifespan could offer insights into both the aging process and the development of aging-related neurodegenerative brain diseases. This work aimed to map, in vivo for the first time with an unbiased whole-brain approach, age-related iron changes using quantitative susceptibility mapping (QSM)--a new postprocessed MRI contrast mechanism. To this end, a full QSM standardization routine was devised and a cohort of N = 116 healthy adults (20-79 years of age) was studied. The whole-brain and ROI analyses confirmed that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their exact anatomical location. Whereas only patchy signs of iron scavenging were observed in white matter, strong, bilateral, and confluent QSM-age associations were identified in several deep-brain nuclei--chiefly the striatum and midbrain-and across motor, premotor, posterior insular, superior prefrontal, and cerebellar cortices. The validity of QSM as a suitable in vivo imaging technique with which to monitor iron dysregulation in the human brain was demonstrated by confirming age-related increases in several subcortical nuclei that are known to accumulate iron with age. The study indicated that, in addition to these structures, there is a predilection for iron accumulation in the frontal lobes, which when combined with the subcortical findings, suggests that iron accumulation with age predominantly affects brain regions concerned with motor/output functions. SIGNIFICANCE STATEMENT: This study used a whole--brain imaging approach known as quantitative susceptibility mapping (QSM) to provide a novel insight into iron accumulation in the brain across the adult lifespan. Validity of the method was demonstrated by showing concordance with ROI analysis and prior knowledge of iron accumulation in subcortical nuclei. We discovered that, beyond these regions, there is extensive involvement of the frontal lobes that has been missed by past ROI analyses. Broadly speaking, therefore, the motor system selectively accumulates iron with age. The results offer insights into the aging process, but also offer a new approach to studying the role of iron dysregulation in the evolution of age-related neurodegenerative diseases.
Assuntos
Envelhecimento , Mapeamento Encefálico , Encéfalo/metabolismo , Imageamento por Ressonância Magnética , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Adulto JovemRESUMO
INTRODUCTION: A classification framework for posterior cortical atrophy (PCA) is proposed to improve the uniformity of definition of the syndrome in a variety of research settings. METHODS: Consensus statements about PCA were developed through a detailed literature review, the formation of an international multidisciplinary working party which convened on four occasions, and a Web-based quantitative survey regarding symptom frequency and the conceptualization of PCA. RESULTS: A three-level classification framework for PCA is described comprising both syndrome- and disease-level descriptions. Classification level 1 (PCA) defines the core clinical, cognitive, and neuroimaging features and exclusion criteria of the clinico-radiological syndrome. Classification level 2 (PCA-pure, PCA-plus) establishes whether, in addition to the core PCA syndrome, the core features of any other neurodegenerative syndromes are present. Classification level 3 (PCA attributable to AD [PCA-AD], Lewy body disease [PCA-LBD], corticobasal degeneration [PCA-CBD], prion disease [PCA-prion]) provides a more formal determination of the underlying cause of the PCA syndrome, based on available pathophysiological biomarker evidence. The issue of additional syndrome-level descriptors is discussed in relation to the challenges of defining stages of syndrome severity and characterizing phenotypic heterogeneity within the PCA spectrum. DISCUSSION: There was strong agreement regarding the definition of the core clinico-radiological syndrome, meaning that the current consensus statement should be regarded as a refinement, development, and extension of previous single-center PCA criteria rather than any wholesale alteration or redescription of the syndrome. The framework and terminology may facilitate the interpretation of research data across studies, be applicable across a broad range of research scenarios (e.g., behavioral interventions, pharmacological trials), and provide a foundation for future collaborative work.
Assuntos
Encefalopatias/classificação , Encéfalo/diagnóstico por imagem , Encefalopatias/diagnóstico por imagem , Encefalopatias/fisiopatologia , Encefalopatias/psicologia , HumanosRESUMO
Quantitative susceptibility mapping (QSM) has recently emerged as a novel magnetic resonance imaging (MRI) method to detect non-haem iron deposition, calcifications, demyelination and vascular lesions in the brain. It has been suggested that QSM is more sensitive than the more conventional quantifiable MRI measure, namely the transverse relaxation rate, R2*. Here, we conducted the first high-resolution, whole-brain, simultaneously acquired, comparative study of the two techniques using 7Tesla MRI. We asked which of the two techniques would be more sensitive to explore global differences in tissue composition in elderly adults relative to young subjects. Both QSM and R2* revealed strong age-related differences in subcortical regions, hippocampus and cortical grey matter, particularly in superior frontal regions, motor/premotor cortices, insula and cerebellar regions. Within the basal ganglia system-but also hippocampus and cerebellar dentate nucleus-, QSM was largely in agreement with R2* with the exception of the globus pallidus. QSM, however, provided superior anatomical contrast and revealed age-related differences in the thalamus and in white matter, which were otherwise largely undetected by R2* measurements. In contrast, in occipital cortex, age-related differences were much greater with R2* compared to QSM. The present study, therefore, demonstrated that in vivo QSM using ultra-high field MRI provides a novel means to characterise age-related differences in the human brain, but also combining QSM and R2* using multi-gradient recalled echo imaging can potentially provide a more complete picture of mineralisation, demyelination and/or vascular alterations in aging and disease.
Assuntos
Envelhecimento/patologia , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Adulto , Idoso , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto JovemRESUMO
INTRODUCTION: In this study we investigated whether peripheral nerve sonography could be used as a biomarker to monitor disease progression in amyotrophic lateral sclerosis (ALS). METHODS: In 37 patients, ulnar and median nerve cross-sectional area (CSA) was determined in at least 2 ultrasound sessions; mean follow-up was 14.5 months. Linear mixed-effects models were conducted to analyze time effects on CSA. RESULTS: Ulnar nerve CSA declined significantly at a monthly rate of -0.04 mm(2) (forearm) and -0.05 mm(2) (wrist); the decrease was more pronounced when baseline CSA was greater. To detect a 50% treatment effect on ulnar nerve CSA, 332 patients would need to be entered in a hypothetical randomized, controlled clinical trial. Time had no significant impact on median nerve CSA. CONCLUSIONS: Distal ulnar nerve ultrasound may be a useful biomarker to monitor disease progression in ALS, especially as hypothetical treatment effects on CSA seem to be detectable in manageable cohort sizes. Muscle Nerve 54: 391-397, 2016.
Assuntos
Esclerose Lateral Amiotrófica , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/fisiopatologia , Ultrassonografia/métodos , Idoso , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Progressão da Doença , Feminino , Seguimentos , Antebraço/inervação , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa/fisiologia , Punho/inervaçãoRESUMO
INTRODUCTION: Adults with Down syndrome (DS) invariably develop Alzheimer's disease (AD) neuropathology. Understanding amyloid deposition in DS can yield crucial information about disease pathogenesis. METHODS: Forty-nine adults with DS aged 25-65 underwent positron emission tomography with Pittsburgh compound-B (PIB). Regional PIB binding was assessed with respect to age, clinical, and cognitive status. RESULTS: Abnormal PIB binding became evident from 39 years, first in striatum followed by rostral prefrontal-cingulo-parietal regions, then caudal frontal, rostral temporal, primary sensorimotor and occipital, and finally parahippocampal cortex, thalamus, and amygdala. PIB binding was related to age, diagnostic status, and cognitive function. DISCUSSION: PIB binding in DS, first appearing in striatum, began around age 40 and was strongly associated with dementia and cognitive decline. The absence of a substantial time lag between amyloid accumulation and cognitive decline contrasts to sporadic/familial AD and suggests this population's suitability for an amyloid primary prevention trial.
Assuntos
Amiloide/metabolismo , Córtex Cerebral/metabolismo , Síndrome de Down/patologia , Adulto , Fatores Etários , Doença de Alzheimer/epidemiologia , Peptídeos beta-Amiloides/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Compostos RadiofarmacêuticosRESUMO
INTRODUCTION: In this study we sought to determine the cross-sectional area (CSA) of peripheral nerves in patients with distinct subtypes of amyotrophic lateral sclerosis (ALS). METHODS: Ulnar and median nerve ultrasound was performed in 78 ALS patients [classic, n = 21; upper motor neuron dominant (UMND), n = 14; lower motor neuron dominant (LMND), n = 20; bulbar, n = 15; primary lateral sclerosis (PLS), n = 8] and 18 matched healthy controls. RESULTS: Compared with controls, ALS patients had significant, distally pronounced reductions of ulnar CSA (forearm/wrist level) across all disease groups, except for PLS. Median nerve CSA (forearm/wrist level) did not differ between controls and ALS. CONCLUSION: Ulnar nerve ultrasound in ALS subgroups revealed significant differences in distal CSA values, which suggests it has value as a marker of LMN involvement. Its potential was particularly evident in the UMND and PLS groups, which can be hard to separate clinically, yet their accurate separation has major prognostic implications.
Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Nervos Periféricos/diagnóstico por imagem , Fenótipo , Idoso , Esclerose Lateral Amiotrófica/classificação , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Nervo Mediano/diagnóstico por imagem , Pessoa de Meia-Idade , Músculo Esquelético/inervação , Nervo Ulnar/diagnóstico por imagem , UltrassonografiaRESUMO
This study aimed to test the superiority proposed by Abbott et al. (2011) of their Voxel based iterative sensitivity (VBIS) method over Voxel Based Morphometry using T2-weighted images (T2-VBM), in detecting intensity changes in Alzheimer's disease (AD). A comparison was made first in simulated intensity lesions and then in AD patients. Intensity changes were evaluated in the whole-brain with VBIS and with a simple intensity-based approach and in specific tissue classes with the conventional VBM method of using tissue probability segments. Results showed that VBIS performed well in the simulated environment though it showed no superiority in detecting the lesion compared to the much simpler VBM approach. The VBIS method, however, failed to detect any meaningful signal intensity reduction in AD patient data. Moreover, its whole brain approach was contaminated by the excess cerebrospinal fluid signal (very bright on T2-weighted scans) in areas of maximal measurable atrophy (mesial temporal lobes); this gave rise to spurious signal intensity increases in these regions in AD. The same artefact was observed for both intensity-based methods but not with the conventional VBM approach of performing statistics on grey matter segments. In conclusion, no evidence was found to indicate that VBIS offers benefits over T2-VBM in AD, nor in simulation intensity lesions. The study highlights the necessity of empirically testing voxel-based analysis techniques rather than merely claiming superiority of one method over another on theoretical grounds.