Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445658

RESUMO

Heart failure is the leading cause of morbidity and mortality and currently affects more than 60 million people worldwide. A key feature in the pathogenesis of almost all forms of heart failure is cardiac fibrosis, which is characterized by excessive accumulation of extracellular matrix components in the heart. Although cardiac fibrosis is beneficial in the short term after acute myocardial injury to preserve the structural and functional integrity of the heart, persistent cardiac fibrosis contributes to pathological cardiac remodeling, leading to mechanical and electrical dysfunction of the heart. Despite its high prevalence, standard therapies specifically targeting cardiac fibrosis are not yet available. Cell-based approaches have been extensively studied as potential treatments for cardiac fibrosis, but several challenges have been identified during clinical translation. The observation that extracellular vesicles (EVs) derived from stem and progenitor cells exhibit some of the therapeutic effects of the parent cells has paved the way to overcome limitations associated with cell therapy. However, to make EV-based products a reality, standardized methods for EV production, isolation, characterization, and storage must be established, along with concrete evidence of their safety and efficacy in clinical trials. This article discusses EVs as novel therapeutics for cardiac fibrosis from a translational perspective.


Assuntos
Cardiomiopatias , Vesículas Extracelulares , Insuficiência Cardíaca , Humanos , Cardiomiopatias/patologia , Coração , Insuficiência Cardíaca/patologia , Vesículas Extracelulares/patologia , Fibrose
2.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884805

RESUMO

Excessive cardiac fibrosis plays a crucial role in almost all types of heart disease. Generally, cardiac fibrosis is a scarring process triggered in response to stress, injury, or aging and is characterized by the accumulation of activated myofibroblasts that deposit high levels of extracellular matrix proteins in the myocardium. While it is beneficial for cardiac repair in the short term, it can also result in pathological remodeling, tissue stiffening, and cardiac dysfunction, contributing to the progression of heart failure, arrhythmia, and sudden cardiac death. Despite its high prevalence, there is a lack of effective and safe therapies that specifically target myofibroblasts to inhibit or even reverse pathological cardiac fibrosis. In the past few decades, cell therapy has been under continuous evaluation as a potential treatment strategy, and several studies have shown that transplantation of mesenchymal stromal cells (MSCs) can reduce cardiac fibrosis and improve heart function. Mechanistically, it is believed that the heart benefits from MSC therapy by stimulating innate anti-fibrotic and regenerative reactions. The mechanisms of action include paracrine signaling and cell-to-cell interactions. In this review, we provide an overview of the anti-fibrotic properties of MSCs and approaches to enhance them and discuss future directions of MSCs for the treatment of cardiac fibrosis.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Fibrose/terapia , Cardiopatias/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Miocárdio/patologia , Miofibroblastos/metabolismo , Medicina Regenerativa/métodos
3.
J Transl Med ; 18(1): 437, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208161

RESUMO

BACKGROUND: Vectors derived from adeno-associated viruses (AAVs) are widely used for gene transfer both in vitro and in vivo and have gained increasing interest as shuttle systems to deliver therapeutic genes to the heart. However, there is little information on their tissue penetration and cytotoxicity, as well as the optimal AAV serotype for transferring genes to diseased hearts. Therefore, we aimed to establish an organotypic heart slice culture system for mouse left ventricular (LV) myocardium and use this platform to analyze gene transfer efficiency, cell tropism, and toxicity of different AAV serotypes. METHODS: LV tissue slices, 300 µm thick, were prepared from 15- to 17-day-old transgenic alpha-myosin heavy-chain-mCherry mice using a vibrating microtome. Tissue slice viability in air-liquid culture was evaluated by calcein-acetoxymethyl ester staining, mCherry fluorescence intensity, and the tetrazolium assay. Four recombinant AAV serotypes (1, 2, 6, 8) expressing green fluorescent protein (GFP) under the CAG promoter were added to the slice surface. Gene transfer efficiency was quantified as the number of GFP-positive cells per slice. AAV cell tropism was examined by comparing the number of GFP-positive cardiomyocytes (CMs) and fibroblasts within heart slices. RESULTS: Slices retained viability in in vitro culture for at least 5 days. After adding AAV particles, AAV6-infected slices showed the highest number of GFP-expressing cells, almost exclusively CMs. Slice incubation with AAV1, 2, and 8 resulted in fewer GFP-positive cells, with AAV2 having the lowest gene transfer efficiency. None of the AAV serotypes tested caused significant cytotoxicity when compared to non-infected control slices. CONCLUSIONS: We have established a readily available mouse organotypic heart slice culture model and provided evidence that AAV6 may be a promising gene therapy vector for heart failure and other cardiac diseases.


Assuntos
Dependovirus , Terapia Genética , Animais , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Camundongos , Sorogrupo , Transdução Genética
5.
Scand J Clin Lab Invest ; 79(1-2): 91-98, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30785340

RESUMO

Shrunken pore syndrome (SPS) is a condition that manifests itself as the decreased renal clearance of low-molecular-weight proteins but normal clearance of creatinine. Pregnant women with evidence of SPS during the first trimester have an increased risk of developing preeclampsia (PE). The nitric oxide (NO) metabolism markers arginine and ADMA, especially their ratio (Arg/ADMA), are recognized markers of endothelial dysfunction. The aim of this nested case-control study was to establish first-trimester reference intervals (RI) for markers of NO metabolism and to study these markers in women with evidence of SPS at the end of the first trimester. Seventy-four women were stratified in the first trimester according to evidence of SPS (SPS + or SPS-) and the occurrence of PE during subsequent pregnancy (PE + or PE-), as follows: SPS-/PE-, SPS+/PE-, SPS-/PE+, and SPS+/PE+. RIs were determined according to the CLSI EP28-A3c guidelines. Serum Arg and ADMA levels were analyzed. The Arg and ADMA concentrations did not differ among the four groups. However, women in the SPS+/PE + group had a significantly lower Arg/ADMA ratio than those in the other 3 groups (p = .02). In conclusion, we defined the first-trimester RI of Arg, ADMA and the Arg/ADMA ratio as markers of NO metabolism. Our results suggest that SPS in the first trimester predicts a pathophysiological hallmark of subsequent PE, i.e. lower NO production leading to increased vessel tone. Early identification of women at risk for later PE could lead to adaptive prophylactic interventions, such as supplementation with Arg or an NO-donor drug in order to mitigate the risk of developing PE.


Assuntos
Arginina/análogos & derivados , Arginina/sangue , Pré-Eclâmpsia/diagnóstico , Primeiro Trimestre da Gravidez/sangue , Insuficiência Renal/diagnóstico , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Creatinina/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Guias de Prática Clínica como Assunto , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/etiologia , Gravidez , Insuficiência Renal/sangue , Insuficiência Renal/complicações
6.
J Gen Virol ; 99(1): 119-134, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205134

RESUMO

The cleavage and packaging of the human cytomegalovirus (HCMV) genome is accomplished by the viral terminase, comprising pUL56 and pUL89, and the recently identified pUL51 subunit. Since knowledge about pUL51 is scarce, we aimed at identifying pUL51 domains that are important for terminase assembly. In silico analysis suggested that the N-terminal half of pUL51 is intrinsically disordered, and that α-helices are present in the C-terminal part. Linker-scanning mutagenesis of pUL51 in the context of the viral genome revealed that amino acid insertions into the predicted α-helices are not compatible with viral growth, whereas upon mutagenesis of the putatively disordered parts interaction with pUL56 and pUL89 was retained and viral progeny was produced. Replacement of pUL51 with the closely related M51 protein of mouse cytomegalovirus did not lead to viable virus, indicating that M51 cannot substitute for pUL51, and swapping the M51 and UL51 N- and C-termini demonstrated the critical role of the pUL51 C-terminal part in building the terminase complex. Notably, the pUL51 C-terminus alone turned out to be sufficient to enable terminase assembly, its nuclear localization and plaque formation. Using HCMV mutants expressing differently tagged pUL51 versions, we did not detect oligomerization of pUL51, as has been proposed for the pUL51 orthologues of other herpesviruses. These data provide an insight into the interaction of pUL51 with the other two terminase components, and provide the basis for unravelling the mode of action of novel antiviral drugs targeting the HCMV terminase.


Assuntos
Citomegalovirus/química , Endodesoxirribonucleases/química , Proteínas Intrinsicamente Desordenadas/química , Subunidades Proteicas/química , Proteínas Virais/química , Sequência de Aminoácidos , Linhagem Celular , Citomegalovirus/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Células Epiteliais , Fibroblastos , Expressão Gênica , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Muromegalovirus/química , Muromegalovirus/genética , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28356534

RESUMO

Human cytomegalovirus (HCMV) genome encapsidation requires several essential viral proteins, among them pUL56, pUL89, and the recently described pUL51, which constitute the viral terminase. To gain insight into terminase complex assembly, we investigated interactions between the individual subunits. For analysis in the viral context, HCMV bacterial artificial chromosomes carrying deletions in the open reading frames encoding the terminase proteins were used. These experiments were complemented by transient-transfection assays with plasmids expressing the terminase components. We found that if one terminase protein was missing, the levels of the other terminase proteins were markedly diminished, which could be overcome by proteasome inhibition or providing the missing subunit in trans These data imply that sequestration of the individual subunits within the terminase complex protects them from proteasomal turnover. The finding that efficient interactions among the terminase proteins occurred only when all three were present together is reminiscent of a folding-upon-binding principle leading to cooperative stability. Furthermore, whereas pUL56 was translocated into the nucleus on its own, correct nuclear localization of pUL51 and pUL89 again required all three terminase constituents. Altogether, these features point to a model of the HCMV terminase as a multiprotein complex in which the three players regulate each other concerning stability, subcellular localization, and assembly into the functional tripartite holoenzyme.IMPORTANCE HCMV is a major risk factor in immunocompromised individuals, and congenital CMV infection is the leading viral cause for long-term sequelae, including deafness and mental retardation. The current treatment of CMV disease is based on drugs sharing the same mechanism, namely, inhibiting viral DNA replication, and often results in adverse side effects and the appearance of resistant virus strains. Recently, the HCMV terminase has emerged as an auspicious target for novel antiviral drugs. A new drug candidate inhibiting the HCMV terminase, Letermovir, displayed excellent potency in clinical trials; however, its precise mode of action is not understood yet. Here, we describe the mutual dependence of the HCMV terminase constituents for their assembly into a functional terminase complex. Besides providing new basic insights into terminase formation, these results will be valuable when studying the mechanism of action for drugs targeting the HCMV terminase and developing additional substances interfering with viral genome encapsidation.


Assuntos
Citomegalovirus/enzimologia , Endodesoxirribonucleases/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular , Cromossomos Artificiais Bacterianos/genética , Citomegalovirus/genética , Citomegalovirus/metabolismo , DNA Viral , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Fibroblastos/virologia , Genoma Viral , Células HeLa , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Estabilidade Proteica , Proteínas Virais/genética , Proteínas Estruturais Virais/genética
8.
J Virol ; 90(13): 5860-5875, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27009952

RESUMO

UNLABELLED: Several essential viral proteins are proposed to participate in genome encapsidation of human cytomegalovirus (HCMV), among them pUL77 and pUL93, which remain largely uncharacterized. To gain insight into their properties, we generated an HCMV mutant expressing a pUL77-monomeric enhanced green fluorescent protein (mGFP) fusion protein and a pUL93-specific antibody. Immunoblotting demonstrated that both proteins are incorporated into capsids and virions. Conversely to data suggesting internal translation initiation sites within the UL93 open reading frame (ORF), we provide evidence that pUL93 synthesis commences at the first start codon. In infected cells, pUL77-mGFP was found in nuclear replication compartments and dot-like structures, colocalizing with capsid proteins. Immunogold labeling of nuclear capsids revealed that pUL77 is present on A, B, and C capsids. Pulldown of pUL77-mGFP revealed copurification of pUL93, indicating interaction between these proteins, which still occurred when capsid formation was prevented. Correct subnuclear distribution of pUL77-mGFP required pUL93 as well as the major capsid protein (and thus probably the presence of capsids), but not the tegument protein pp150 or the encapsidation protein pUL52, demonstrating that pUL77 nuclear targeting occurs independently of the formation of DNA-filled capsids. When pUL77 or pUL93 was missing, generation of unit-length genomes was not observed, and only empty B capsids were produced. Taken together, these results show that pUL77 and pUL93 are capsid constituents needed for HCMV genome encapsidation. Therefore, the task of pUL77 seems to differ from that of its alphaherpesvirus orthologue pUL25, which exerts its function subsequent to genome cleavage-packaging. IMPORTANCE: The essential HCMV proteins pUL77 and pUL93 were suggested to be involved in viral genome cleavage-packaging but are poorly characterized both biochemically and functionally. By producing a monoclonal antibody against pUL93 and generating an HCMV mutant in which pUL77 is fused to a fluorescent protein, we show that pUL77 and pUL93 are capsid constituents, with pUL77 being similarly abundant on all capsid types. Each protein is required for genome encapsidation, as the absence of either pUL77 or pUL93 results in a genome packaging defect with the formation of empty capsids only. This distinguishes pUL77 from its alphaherpesvirus orthologue pUL25, which is enriched on DNA-filled capsids and exerts its function after the viral DNA is packaged. Our data for the first time describe an HCMV mutant with a fluorescent capsid and provide insight into the roles of pUL77 and pUL93, thus contributing to a better understanding of the HCMV encapsidation network.


Assuntos
Capsídeo/metabolismo , Citomegalovirus/química , Citomegalovirus/genética , DNA Viral/metabolismo , Genoma Viral , Proteínas Virais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Citomegalovirus/metabolismo , DNA Viral/genética , Proteínas de Fluorescência Verde , Humanos , Montagem de Vírus
10.
Cardiol Ther ; 13(1): 39-67, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38381282

RESUMO

Numerous genetic and epidemiologic studies have demonstrated an association between elevated levels of lipoprotein(a) (Lp[a]) and cardiovascular disease. As a result, lowering Lp(a) levels is widely recognized as a promising strategy for reducing the risk of new-onset coronary heart disease, stroke, and heart failure. Lp(a) consists of a low-density lipoprotein-like particle with covalently linked apolipoprotein A (apo[a]) and apolipoprotein B-100, which explains its pro-thrombotic, pro-inflammatory, and pro-atherogenic properties. Lp(a) serum concentrations are genetically determined by the apo(a) isoform, with shorter isoforms having a higher rate of particle synthesis. To date, there are no approved pharmacological therapies that effectively reduce Lp(a) levels. Promising treatment approaches targeting apo(a) expression include RNA-based drugs such as pelacarsen, olpasiran, SLN360, and lepodisiran, which are currently in clinical trials. In this comprehensive review, we provide a detailed overview of RNA-based therapeutic approaches and discuss the recent advances and challenges of RNA therapeutics specifically designed to reduce Lp(a) levels and thus the risk of cardiovascular disease.

11.
J Cardiovasc Med (Hagerstown) ; 24(4): 244-252, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36938808

RESUMO

BACKGROUND AND AIMS: High epicardial adipose tissue (EAT) attenuation is a key characteristic of adipose tissue dysfunction and associated with coronary artery disease (CAD). As little is known about the modulation of EAT attenuation by metabolic disorders, we investigated the association between EAT attenuation and CAD risk factors, CAD presence and CAD severity in type 2 diabetes mellitus (T2DM) patients. METHODS: We included 276 inpatients with T2DM and 305 control patients with normal glucose metabolism (NGM), who underwent cardiac computed tomography angiography (CCTA) and coronary artery calcium (CAC) scoring. EAT attenuation and volume were evaluated by contrast-enhanced CCTA image analysis. Furthermore, segment stenosis scores (SSSs) of the left main coronary artery (LMCA), left anterior descending artery (LAD), left circumflex artery (LCX), right coronary artery (RCA), diagonal/intermediate branch (D/I) and obtuse marginal branch (OM) were calculated to assess CAD severity. RESULTS: T2DM patients showed higher significant CAC scores, coronary plaque prevalence, total SSSs and LMCA-SSSs, LAD-SSSs, LCX-SSSs, RCA-SSSs and D/I-SSSs compared with NGM controls. In contrast to NGM controls, EAT volume was significantly increased in T2DM patients, whereas EAT attenuation was similar. In T2DM patients, EAT attenuation was associated with discrete CAD risk factors, the presence of coronary and triple-vessel plaques, as well as LAD-SSSs, LCX-SSSs, RCA-SSSs and total SSSs. In addition, EAT attenuation was only associated with the total SSS of calcified plaques, but not with noncalcified plaques. CONCLUSION: In T2DM patients, high EAT attenuation is associated with the presence and severity of CAD in general and with coronary stenosis caused by calcified plaques in particular.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Humanos , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Angiografia Coronária/métodos , Pericárdio/diagnóstico por imagem , Estenose Coronária/diagnóstico por imagem , Estenose Coronária/complicações , Vasos Coronários/diagnóstico por imagem , Constrição Patológica , Tecido Adiposo/diagnóstico por imagem
12.
Eur J Cardiothorac Surg ; 64(6)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37740952

RESUMO

OBJECTIVES: Despite the success of coronary artery bypass graft (CABG) surgery using autologous saphenous vein grafts (SVGs), nearly 50% of patients experience vein graft disease within 10 years of surgery. One contributing factor to early vein graft disease is endothelial damage during short-term storage of SVGs in inappropriate solutions. Our aim was to evaluate the effects of a novel endothelial damage inhibitor (EDI) on SVGs from patients undergoing elective CABG surgery and on venous endothelial cells (VECs) derived from these SVGs. METHODS: SVGs from 11 patients participating in an ongoing clinical registry (NCT02922088) were included in this study, and incubated with both full electrolyte solution (FES) or EDI for 1 h and then examined histologically. In 8 of 11 patients, VECs were isolated from untreated grafts, incubated with both FES and EDI for 2 h under hypothermic stress conditions and then analysed for activation of an inflammatory phenotype, cell damage and cytotoxicity, as well as endothelial integrity and barrier function. RESULTS: The EDI was superior to FES in protecting the endothelium in SVGs (74 ± 8% versus 56 ± 8%, P < 0.001). Besides confirming that the EDI prevents apoptosis in SVG-derived VECs, we also showed that the EDI temporarily reduces adherens junctions in VECs while protecting focal adhesions compared to FES. CONCLUSIONS: The EDI protects the connectivity and function of the SVG endothelium. Our data suggest that the EDI can preserve focal adhesions in VECs during short-term storage after graft harvesting. This might explain the superiority of the EDI in maintaining most of the endothelium in venous CABG surgery conduits.


Assuntos
Células Endoteliais , Doenças Vasculares , Humanos , Veia Safena/transplante , Grau de Desobstrução Vascular/fisiologia , Ponte de Artéria Coronária/efeitos adversos , Endotélio Vascular
13.
ACS Synth Biol ; 11(8): 2623-2635, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35815862

RESUMO

MicroRNAs play an essential role in cell homeostasis and have been proposed as therapeutic agents. One strategy to deliver microRNAs is to genetically engineer target cells to express microRNAs of interest. However, to control dosage and timing, as well as to limit potential side-effects, microRNAs' expression should ideally be under exogenous, inducible control. Conditional expression of miRNA-based short hairpin RNAs (shRNAmirs) via gene regulatory circuits such as the Tet-system is therefore a promising strategy to control shRNAmirs' expression in research and therapy. Single vector approaches like Tet-On all-in-one designs are more compatible with potential clinical applications by providing the Tet-On system components in a single round of genetic engineering. However, all-in-one systems often come at the expense of heterogeneous and unstable expression. In this study, we aimed to understand the causes that lead to such erratic transgene expression. By using a reporter cell, we found that the degree of heterogeneity mostly correlated with reverse tetracycline transactivator (rtTA) expression levels. Moreover, the targeted integration of a potent rtTA expression cassette into a genomic safe harbor locus functionally rescued previously silenced rtTA-responsive transcription units. Overall, our results suggest that ensuring homogenous and stable rtTA expression is essential for the robust and reliable performance of future Tet-On all-in-one designs.


Assuntos
MicroRNAs , Transativadores , Antibacterianos , Regulação da Expressão Gênica , MicroRNAs/genética , Mosaicismo , Tetraciclina/farmacologia , Transativadores/genética , Transativadores/metabolismo , Transgenes/genética
14.
PLoS One ; 17(1): e0261462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986181

RESUMO

BACKGROUND: Cell-based therapy has long been considered a promising strategy for the treatment of heart failure (HF). However, its effectiveness in the clinical setting is now doubted. Because previous meta-analyses provided conflicting results, we sought to review all available data focusing on cell type and trial design. METHODS AND FINDINGS: The electronic databases PubMed, Cochrane library, ClinicalTrials.gov, and EudraCT were searched for randomized controlled trials (RCTs) utilizing cell therapy for HF patients from January 1, 2000 to December 31, 2020. Forty-three RCTs with 2855 participants were identified. The quality of the reported study design was assessed by evaluating the risk-of-bias (ROB). Primary outcomes were defined as mortality rate and left ventricular ejection fraction (LVEF) change from baseline. Secondary outcomes included both heart function data and clinical symptoms/events. Between-study heterogeneity was assessed using the I2 index. Subgroup analysis was performed based on HF type, cell source, cell origin, cell type, cell processing, type of surgical intervention, cell delivery routes, cell dose, and follow-up duration. Only 10 of the 43 studies had a low ROB for all method- and outcome parameters. A higher ROB was associated with a greater increase in LVEF. Overall, there was no impact on mortality for up to 12 months follow-up, and a clinically irrelevant average LVEF increase by LVEF (2.4%, 95% CI = 0.75-4.05, p = 0.004). Freshly isolated, primary cells tended to produce better outcomes than cultured cell products, but there was no clear impact of the cell source tissue, bone marrow cell phenotype or cell chricdose (raw or normalized for CD34+ cells). A meaningful increase in LVEF was only observed when cell therapy was combined with myocardial revascularization. CONCLUSIONS: The published results suggest a small increase in LVEF following cell therapy for heart failure, but publication bias and methodologic shortcomings need to be taken into account. Given that cardiac cell therapy has now been pursued for 20 years without real progress, further efforts should not be made. STUDY REGISTRY NUMBER: This meta-analysis is registered at the international prospective register of systematic reviews, number CRD42019118872.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/mortalidade , Hospitalização , Humanos , Infarto do Miocárdio/terapia , Variações Dependentes do Observador , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Volume Sistólico , Revisões Sistemáticas como Assunto , Resultado do Tratamento , Função Ventricular Esquerda
15.
Front Cardiovasc Med ; 9: 971028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186971

RESUMO

Cardiovascular (CV) implants are still associated with thrombogenicity due to insufficient hemocompatibility. Endothelialization of their luminal surface is a promising strategy to increase their hemocompatibility. In this review, we provide a collection of research studies and review articles aiming to summarize the recent efforts on surface modifications of CV implants, including stents, grafts, valves, and ventricular assist devises. We focus in particular on the implementation of micrometer or nanoscale surface modifications, physical characteristics of known biomaterials (such as wetness and stiffness), and surface morphological features (such as gratings, fibers, pores, and pits). We also review how biomechanical signals originating from the endothelial cell for surface interaction can be directed by topography engineering approaches toward the survival of the endothelium and its long-term adaptation. Finally, we summarize the regulatory and economic challenges that may prevent clinical implementation of endothelialized CV implants.

16.
Front Cardiovasc Med ; 9: 953582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277782

RESUMO

Thrombogenicity remains a major issue in cardiovascular implants (CVIs). Complete surficial coverage of CVIs by a monolayer of endothelial cells (ECs) prior to implantation represents a promising strategy but is hampered by the overall logistical complexity and the high number of cells required. Consequently, extensive cell expansion is necessary, which may eventually lead to replicative senescence. Considering that micro-structured surfaces with anisotropic topography may promote endothelialization, we investigated the impact of gratings on the biomechanical properties and the replicative capacity of senescent ECs. After cultivation on gridded surfaces, the cells showed significant improvements in terms of adherens junction integrity, cell elongation, and orientation of the actin filaments, as well as enhanced yes-associated protein nuclear translocation and cell proliferation. Our data therefore suggest that micro-structured surfaces with anisotropic topographies may improve long-term endothelialization of CVIs.

17.
Front Vet Sci ; 8: 790019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938797

RESUMO

Domestic pigs are widely used in cardiovascular research as the porcine circulatory system bears a remarkable resemblance to that of humans. In order to reduce variability, only clinically healthy animals enter the study as their health status is assessed in entry examination. Like humans, pigs can also suffer from congenital heart disease, such as an atrial septal defect (ASD), which often remains undetected. Due to the malformation of the endocardial cushion during organ development, mitral valve defects (e.g., mitral clefts) are sometimes associated with ASDs, further contributing to hemodynamic instability. In this work, we report an incidental finding of a hemodynamically highly relevant ASD in the presence of incompetent mitral and tricuspid valves, in an asymptomatic, otherwise healthy juvenile pig. In-depth characterization of the cardiac blood flow by four-dimensional (4D) flow magnetic resonance imaging (MRI) revealed a prominent diastolic left-to-right and discrete systolic right-to-left shunt, resulting in a pulmonary-to-systemic flow ratio of 1.8. Severe mitral (15 mL/stroke) and tricuspid (22 mL/stroke) regurgitation further reduced cardiac output. Pathological examination confirmed the presence of an ostium primum ASD and found a serous cyst of lymphatic origin that was filled with clear fluid partially occluding the ASD. A large mitral cleft was identified as the most likely cause of severe regurgitation, and histology showed mild to moderate endocardiosis in the coaptation area of both atrio-ventricular valves. In summary, although not common, congenital heart defects could play a role as a cause of experimental variability or even intra-experimental mortality when working with apparently heathy, juvenile pigs.

18.
Stem Cells Transl Med ; 9(12): 1558-1569, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32761804

RESUMO

Mesenchymal stromal cells (MSCs) offer great potential for the treatment of cardiovascular diseases (CVDs) such as myocardial infarction and heart failure. Studies have revealed that the efficacy of MSCs is mainly attributed to their capacity to secrete numerous trophic factors that promote angiogenesis, inhibit apoptosis, and modulate the immune response. There is growing evidence that MSC-derived extracellular vesicles (EVs) containing a cargo of lipids, proteins, metabolites, and RNAs play a key role in this paracrine mechanism. In particular, encapsulated microRNAs have been identified as important positive regulators of angiogenesis in pathological settings of insufficient blood supply to the heart, thus opening a new path for the treatment of CVD. In the present review, we discuss the current knowledge related to the proangiogenic potential of MSCs and MSC-derived EVs as well as methods to enhance their biological activities for improved cardiac tissue repair. Increasing our understanding of mechanisms supporting angiogenesis will help optimize future approaches to CVD intervention.


Assuntos
Doenças Cardiovasculares/terapia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Humanos , Camundongos
19.
Biomolecules ; 10(9)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971982

RESUMO

The cardioprotective properties of extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are currently being investigated in preclinical studies. Although microRNAs (miRNAs) encapsulated in EVs have been identified as one component responsible for the cardioprotective effect of MSCs, their potential off-target effects have not been sufficiently characterized. In the present study, we aimed to investigate the miRNA profile of EVs isolated from MSCs that were derived from cord blood (CB) and adipose tissue (AT). The identified miRNAs were then compared to known targets from the literature to discover possible adverse effects prior to clinical use. Our data show that while many cardioprotective miRNAs such as miR-22-3p, miR-26a-5p, miR-29c-3p, and miR-125b-5p were present in CB- and AT-MSC-derived EVs, a large number of known oncogenic and tumor suppressor miRNAs such as miR-16-5p, miR-23a-3p, and miR-191-5p were also detected. These findings highlight the importance of quality assessment for therapeutically applied EV preparations.


Assuntos
Tecido Adiposo/citologia , Vesículas Extracelulares/genética , Sangue Fetal/citologia , Perfilação da Expressão Gênica/métodos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Adulto , Células Cultivadas , Análise por Conglomerados , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , MicroRNAs/classificação , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Transdução de Sinais/genética
20.
Front Vet Sci ; 7: 451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851029

RESUMO

Canine inflammatory bowel disease (IBD) is a chronic, immunologically mediated intestinal disorder, resulting from the complex interaction of genetic, environmental and immune factors. Hydrolyzed diets are used in dogs with food-responsive diarrhea (FRD) to reduce adverse responses to immunostimulatory proteins. Prebiotics (PRBs) and glycosaminoglycans (GAGs) have previously been demonstrated to show anti-inflammatory activity in the intestinal mucosa. Notably, hydrolyzed diets combined with the administration of PRBs and GAGs offer a promising approach for the treatment of canine IBD. Our aim was to investigate the effects of hydrolyzed diet and GAG+PRB co-treatment on the serum metabolomic profile of IBD dogs. Dogs with IBD randomly received either hydrolyzed diet supplemented with GAGs and PRBs (treatment 1) or hydrolyzed diet alone (treatment 2) for 10 weeks. A targeted metabolomics approach using mass spectrometry was performed to quantify changes in the serum metabolome before and after treatment and between treatment 1 and 2. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), hierarchical cluster analysis (HCA) and univariate statistics were used to identify differences between the treatment groups. PCA, PLS-DA, and HCA showed a clear clustering of IBD dogs before and after hydrolyzed diet, indicating that the treatment impacted the serum metabolome. Univariate analysis revealed that most of the altered metabolites were involved in lipid metabolism. The most impacted lipid classes were components of cell membranes, including glycerophospholipids, sphingolipids, and di- and triglycerides. In addition, changes in serum metabolites after GAG+PRB co-treatment suggested a possible additional beneficial effect on the lipid metabolism in IBD dogs. In conclusion, the present study showed a significant increase in metabolites that protect gut cell membrane integrity in response to hydrolyzed diet alone or in combination with GAG+PRB co-treatment. Administration of such treatment over 70 days improved selected serum biomarkers of canine IBD, possibly indicating improved intestinal membrane integrity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA