Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 49(1): 39-52, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139459

RESUMO

We report for the first time label-free quantification of xenobiotic metabolizing enzymes (XME), transporters, redox enzymes, proteases, and nucleases in six human skin explants and a three-dimensional living skin equivalent model from LabSkin. We aimed to evaluate the suitability of LabSkin as an alternative to animal testing for the development of topical formulations. More than 2000 proteins were identified and quantified from total cellular protein. Alcohol dehydrogenase 1C, the most abundant phase I XME in human skin, and glutathione S-transferase pi 1, the most abundant phase II XME in human skin, were present in similar abundance in LabSkin. Several esterases were quantified and esterase activity was confirmed in LabSkin using substrate-based mass spectrometry imaging. No cytochrome P450 (P450) activity was observed for the substrates tested, in agreement with the proteomics data, where the cognate P450s were absent in both human skin and LabSkin. Label-free protein quantification allowed insights into other related processes such as redox homeostasis and proteolysis. For example, the most abundant antioxidant enzymes were thioredoxin and peroxiredoxin-1. This systematic determination of functional equivalence between human skin and LabSkin is a key step toward the construction of a representative human in vitro skin model, which can be used as an alternative to current animal-based tests for chemical safety and for predicting dosage of topically administered drugs. SIGNIFICANCE STATEMENT: The use of label-free quantitative mass spectrometry to elucidate the abundance of xenobiotic metabolizing enzymes, transporters, redox enzymes, proteases, and nucleases in human skin enhance our understanding of the skin physiology and biotransformation of topical drugs and cosmetics. This will help to develop mathematical models to predict drug metabolism in human skin and to develop more robust in vitro engineered human skin tissue as alternatives to animal testing.


Assuntos
Alternativas aos Testes com Animais/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Pele , Xenobióticos/farmacocinética , Administração Tópica , Biotransformação , Técnicas de Cultura de Células em Três Dimensões , Humanos , Inativação Metabólica , Taxa de Depuração Metabólica , Modelos Biológicos , Pele/diagnóstico por imagem , Pele/efeitos dos fármacos , Pele/enzimologia
2.
Anal Bioanal Chem ; 385(4): 692-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16741768

RESUMO

We describe a proteomics procedure using bioinformatics, immunoprecipitation, two-dimensional gel electrophoresis, Western blotting, in-gel digestion, LC-MS, MALDI-MS, and MS-MS for isolation and identification of amyloid precursor protein (APP) isoforms APP695, APP751, and APP770. Retinoic acid-induced Ntera 2 cell line, derived from a human teratocarcinoma cells, was the in-vitro source of APP. Initial isolation of whole APP was performed by immunoprecipitation, using AB10, a monoclonal antibody raised to amino acids 1-17 of the beta-amyloid peptide sequence, which is present in all three alpha secretase-cleaved isoforms of interest. The next stage was separation of whole APP into its isoform components by two-dimensional gel electrophoresis. Because of low APP concentrations, detection by the usual staining methods, for example Sypro Ruby, able to detect low picomole concentrations, did not enable visualisation of the isoforms. Western analysis, however, enabled primary detection of APP, because of the inherent sensitivity of antibodies raised to specific isoform regions. This initial visualization acted as a template for excision of isoforms from 2D gels, which were then subjected to peptide mass mapping. Initial theoretical digestion of each isoform revealed the presence of specific peptides, which were then used as "tags" for isoform detection.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/análise , Western Blotting , Linhagem Celular , Cromatografia Líquida , Biologia Computacional , Eletroforese em Gel Bidimensional , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA