Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Br J Cancer ; 128(2): 245-254, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36352028

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is a therapeutic target to which HER2/HER3 activation may contribute resistance. This Phase I/II study examined the toxicity and efficacy of high-dose pulsed AZD8931, an EGFR/HER2/HER3 inhibitor, combined with chemotherapy, in metastatic colorectal cancer (CRC). METHODS: Treatment-naive patients received 4-day pulses of AZD8931 with irinotecan/5-FU (FOLFIRI) in a Phase I/II single-arm trial. Primary endpoint for Phase I was dose limiting toxicity (DLT); for Phase II best overall response. Samples were analysed for pharmacokinetics, EGFR dimers in circulating exosomes and Comet assay quantitating DNA damage. RESULTS: Eighteen patients received FOLFIRI and AZD8931. At 160 mg bd, 1 patient experienced G3 DLT; 160 mg bd was used for cohort expansion. No grade 5 adverse events (AE) reported. Seven (39%) and 1 (6%) patients experienced grade 3 and grade 4 AEs, respectively. Of 12 patients receiving 160 mg bd, best overall response rate was 25%, median PFS and OS were 8.7 and 21.2 months, respectively. A reduction in circulating HER2/3 dimer in the two responding patients after 12 weeks treatment was observed. CONCLUSIONS: The combination of pulsed high-dose AZD8931 with FOLFIRI has acceptable toxicity. Further studies of TKI sequencing may establish a role for pulsed use of such agents rather than continuous exposure. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov number: NCT01862003.


Assuntos
Neoplasias Colorretais , Receptor ErbB-3 , Humanos , Receptor ErbB-3/metabolismo , Transdução de Sinais , Quinazolinas/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/induzido quimicamente , Fluoruracila , Leucovorina/efeitos adversos , Camptotecina , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo
2.
J Cell Biol ; 161(1): 155-67, 2003 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-12695503

RESUMO

The fibronectin (FN)-binding integrins alpha4beta1 and alpha5beta1 confer different cell adhesive properties, particularly with respect to focal adhesion formation and migration. After analyses of alpha4+/alpha5+ A375-SM melanoma cell adhesion to fragments of FN that interact selectively with alpha4beta1 and alpha5beta1, we now report two differences in the signals transduced by each receptor that underpin their specific adhesive properties. First, alpha5beta1 and alpha4beta1 have a differential requirement for cell surface proteoglycan engagement for focal adhesion formation and migration; alpha5beta1 requires a proteoglycan coreceptor (syndecan-4), and alpha4beta1 does not. Second, adhesion via alpha5beta1 caused an eightfold increase in protein kinase Calpha (PKCalpha) activation, but only basal PKCalpha activity was observed after adhesion via alpha4beta1. Pharmacological inhibition of PKCalpha and transient expression of dominant-negative PKCalpha, but not dominant-negative PKCdelta or PKCzeta constructs, suppressed focal adhesion formation and cell migration mediated by alpha5beta1, but had no effect on alpha4beta1. These findings demonstrate that different integrins can signal to induce focal adhesion formation and migration by different mechanisms, and they identify PKCalpha signaling as central to the functional differences between alpha4beta1 and alpha5beta1.


Assuntos
Adesão Celular/genética , Movimento Celular/genética , Células Eucarióticas/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Células Eucarióticas/citologia , Imunofluorescência , Humanos , Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Glicoproteínas de Membrana/metabolismo , Mutação/genética , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa , Proteína Quinase C-delta , Proteoglicanas/metabolismo , Transdução de Sinais/genética , Sindecana-4 , Células Tumorais Cultivadas
3.
Cancer Prev Res (Phila) ; 12(10): 653-666, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31431500

RESUMO

Chemoprevention is cost-effective for colorectal cancer when targeted at intermediate- or high-risk populations. Bufalin is a cardiac glycoside extracted from the traditional Chinese medicine (TCM) "Chan Su," which has been used as an anticancer agent. On the basis of the relative safety of bufalin, we investigated whether bufalin could act as a chemoprophylactic agent to prevent colon tumorigenesis in two murine models, namely colitis-associated colorectal cancer and Apc germline mutation-developed colorectal cancer. Our results revealed that long-term (12-16 weeks) administration of low-dose bufalin (0.5 mg/kg) effectively suppressed tumorigenesis in both colorectal cancer models, accompanied by attenuated epithelial cell proliferation (reduced bromodeoxyuridine incorporation, lower levels of cyclin A, cyclin D1, cyclin E, and cyclin-dependent kinases-2/4, and higher levels of p21 and p27) and promoted apoptosis (increased TUNEL positivity and caspase-3/9 cleavages, reduced levels of Bcl-2, Bcl-xL and survivin, and increased levels of Bax and Bak). Bufalin also suppressed the expression of proinflammatory mediators [reduced levels of cyclooxygenase-2, tumor TNFα, IL1ß, IL6, C-X-C motif chemokine ligand (CXCL)-1, CXCL-2, and CXCL-5] in the colitis-associated colorectal cancer model. These effects were associated with the inhibition of oncogenic NF-κB and PI3K/Akt pathways. Our findings unveil a novel chemoprophylactic action of bufalin in colorectal cancer in vivo and provided efficacy data and mechanistic evidence for further clinical evaluation of this TCM compound for colorectal cancer chemoprevention in individuals at risk of colorectal cancer.


Assuntos
Antineoplásicos/uso terapêutico , Bufanolídeos/uso terapêutico , Neoplasias Colorretais/prevenção & controle , Citoproteção/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Quimioprevenção/métodos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Células HCT116 , Humanos , Intestinos/patologia , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Proc Natl Acad Sci U S A ; 103(11): 4089-94, 2006 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-16537489

RESUMO

Förster resonance energy transfer (FRET) microscopy is a powerful technique that enables the visualization of signaling intermediates, protein interactions, and protein conformational and biochemical status. With the availability of an ever-increasing collection of fluorescent proteins, pairs of spectrally different variants have been used for the study of FRET in living cells. However, suitable spectral overlap, necessary for efficient FRET, is limited by the requirement for proper emission separation. Currently used FRET pairs represent compromises between these opposing spectral demands that reduce the maximally attainable FRET sensitivity. We present a previously undescribed FRET acceptor, a nonfluorescent yellow fluorescent protein (YFP) mutant called REACh (for Resonance Energy-Accepting Chromoprotein). REACh allows the use of the photophysically superior FRET donor EGFP, with which it exhibits optimal spectral overlap, which obviates the need for narrow spectral filtering and allows additional fluorescent labels to be used within the same cell. The latter allows the generation of sophisticated bioassays for complex biological questions. We show that this dark acceptor is ideally suited for donor fluorescence lifetime imaging microscopy (FLIM) and confirm these measurements with an independent intensity-based donor fluorescence quenching resonance energy transfer (FqRET) assay. REACh also can be used in donor photobleaching kinetics-based FRET studies. By detecting FRET between a GFP-tagged ubiquitination substrate and REACh-labeled ubiquitin, we imaged the active ubiquitination machinery inside cells. This assay therefore can be used to study proteins whose function is regulated by ubiquitination.


Assuntos
Proteínas de Bactérias/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Animais , Proteínas de Bactérias/genética , Fenômenos Biofísicos , Biofísica , Células CHO , Cricetinae , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA