Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 566(7745): 558-562, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30778195

RESUMO

The genomes of multicellular organisms are extensively folded into 3D chromosome territories within the nucleus1. Advanced 3D genome-mapping methods that combine proximity ligation and high-throughput sequencing (such as chromosome conformation capture, Hi-C)2, and chromatin immunoprecipitation techniques (such as chromatin interaction analysis by paired-end tag sequencing, ChIA-PET)3, have revealed topologically associating domains4 with frequent chromatin contacts, and have identified chromatin loops mediated by specific protein factors for insulation and regulation of transcription5-7. However, these methods rely on pairwise proximity ligation and reflect population-level views, and thus cannot reveal the detailed nature of chromatin interactions. Although single-cell Hi-C8 potentially overcomes this issue, this method may be limited by the sparsity of data that is inherent to current single-cell assays. Recent advances in microfluidics have opened opportunities for droplet-based genomic analysis9 but this approach has not yet been adapted for chromatin interaction analysis. Here we describe a strategy for multiplex chromatin-interaction analysis via droplet-based and barcode-linked sequencing, which we name ChIA-Drop. We demonstrate the robustness of ChIA-Drop in capturing complex chromatin interactions with single-molecule precision, which has not been possible using methods based on population-level pairwise contacts. By applying ChIA-Drop to Drosophila cells, we show that chromatin topological structures predominantly consist of multiplex chromatin interactions with high heterogeneity; ChIA-Drop also reveals promoter-centred multivalent interactions, which provide topological insights into transcription.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Microfluídica/métodos , Análise de Sequência de DNA/métodos , Imagem Individual de Molécula/métodos , Imagem Individual de Molécula/normas , Animais , Sítios de Ligação/genética , Linhagem Celular , Cromatina/química , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Microfluídica/normas , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transcrição Gênica
2.
Nat Methods ; 15(6): 455-460, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29713081

RESUMO

Acquired genomic structural variants (SVs) are major hallmarks of cancer genomes, but they are challenging to reconstruct from short-read sequencing data. Here we exploited the long reads of the nanopore platform using our customized pipeline, Picky ( https://github.com/TheJacksonLaboratory/Picky ), to reveal SVs of diverse architecture in a breast cancer model. We identified the full spectrum of SVs with superior specificity and sensitivity relative to short-read analyses, and uncovered repetitive DNA as the major source of variation. Examination of genome-wide breakpoints at nucleotide resolution uncovered micro-insertions as the common structural features associated with SVs. Breakpoint density across the genome is associated with the propensity for interchromosomal connectivity and was found to be enriched in promoters and transcribed regions of the genome. Furthermore, we observed an over-representation of reciprocal translocations from chromosomal double-crossovers through phased SVs. We demonstrate that Picky analysis is an effective tool for comprehensive detection of SVs in cancer genomes from long-read data.


Assuntos
Regulação Neoplásica da Expressão Gênica , Variação Estrutural do Genoma , Nanoporos , Linhagem Celular Tumoral , Análise Mutacional de DNA/métodos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
3.
Proc Natl Acad Sci U S A ; 115(4): E753-E761, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29317534

RESUMO

The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus, and A. steynii) have been whole-genome PacBio sequenced to provide genetic references in three Aspergillus sections. A. taichungensis and A. candidus also were sequenced for SM elucidation. Thirteen Aspergillus genomes were analyzed with comparative genomics to determine phylogeny and genetic diversity, showing that each presented genome contains 15-27% genes not found in other sequenced Aspergilli. In particular, A. novofumigatus was compared with the pathogenic species A. fumigatus This suggests that A. novofumigatus can produce most of the same allergens, virulence, and pathogenicity factors as A. fumigatus, suggesting that A. novofumigatus could be as pathogenic as A. fumigatus Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences, and predictive algorithms. We thus identify putative SM clusters for aflatoxin, chlorflavonin, and ochrindol in A. ochraceoroseus, A. campestris, and A. steynii, respectively, and novofumigatonin, ent-cycloechinulin, and epi-aszonalenins in A. novofumigatus Our study delivers six fungal genomes, showing the large diversity found in the Aspergillus genus; highlights the potential for discovery of beneficial or harmful SMs; and supports reports of A. novofumigatus pathogenicity. It also shows how biological, biochemical, and genomic information can be combined to identify genes involved in the biosynthesis of specific SMs.


Assuntos
Aflatoxinas/genética , Aspergillus/genética , Aspergillus/metabolismo , Família Multigênica , Metabolismo Secundário/genética , Aflatoxinas/biossíntese , Alérgenos/genética , Aspergillus/patogenicidade , Metilação de DNA , Evolução Molecular , Flavonoides/biossíntese , Genoma Fúngico , Alcaloides Indólicos/metabolismo , Filogenia , Terpenos/metabolismo , Sequenciamento Completo do Genoma
4.
Nature ; 504(7479): 306-310, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24213634

RESUMO

In multicellular organisms, transcription regulation is one of the central mechanisms modelling lineage differentiation and cell-fate determination. Transcription requires dynamic chromatin configurations between promoters and their corresponding distal regulatory elements. It is believed that their communication occurs within large discrete foci of aggregated RNA polymerases termed transcription factories in three-dimensional nuclear space. However, the dynamic nature of chromatin connectivity has not been characterized at the genome-wide level. Here, through a chromatin interaction analysis with paired-end tagging approach using an antibody that primarily recognizes the pre-initiation complexes of RNA polymerase II, we explore the transcriptional interactomes of three mouse cells of progressive lineage commitment, including pluripotent embryonic stem cells, neural stem cells and neurosphere stem/progenitor cells. Our global chromatin connectivity maps reveal approximately 40,000 long-range interactions, suggest precise enhancer-promoter associations and delineate cell-type-specific chromatin structures. Analysis of the complex regulatory repertoire shows that there are extensive colocalizations among promoters and distal-acting enhancers. Most of the enhancers associate with promoters located beyond their nearest active genes, indicating that the linear juxtaposition is not the only guiding principle driving enhancer target selection. Although promoter-enhancer interactions exhibit high cell-type specificity, promoters involved in interactions are found to be generally common and mostly active among different cells. Chromatin connectivity networks reveal that the pivotal genes of reprogramming functions are transcribed within physical proximity to each other in embryonic stem cells, linking chromatin architecture to coordinated gene expression. Our study sets the stage for the full-scale dissection of spatial and temporal genome structures and their roles in orchestrating development.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Animais , Linhagem Celular , Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Células-Tronco Neurais/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica/genética , Peixe-Zebra/genética
5.
Glia ; 66(9): 1929-1946, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29732603

RESUMO

Sox2 is a transcription factor active in the nervous system, within different cell types, ranging from radial glia neural stem cells to a few specific types of differentiated glia and neurons. Mutations in the human SOX2 transcription factor gene cause various central nervous system (CNS) abnormalities, involving hippocampus and eye defects, as well as ataxia. Conditional Sox2 mutation in mouse, with different Cre transgenes, previously recapitulated different essential features of the disease, such as hippocampus and eye defects. In the cerebellum, Sox2 is active from early embryogenesis in the neural progenitors of the cerebellar primordium; Sox2 expression is maintained, postnatally, within Bergmann glia (BG), a differentiated cell type essential for Purkinje neurons functionality and correct motor control. By performing Sox2 Cre-mediated ablation in the developing and postnatal mouse cerebellum, we reproduced ataxia features. Embryonic Sox2 deletion (with Wnt1Cre) leads to reduction of the cerebellar vermis, known to be commonly related to ataxia, preceded by deregulation of Otx2 and Gbx2, critical regulators of vermis development. Postnatally, BG is progressively disorganized, mislocalized, and reduced in mutants. Sox2 postnatal deletion, specifically induced in glia (with GLAST-CreERT2), reproduces the BG defect, and causes (milder) ataxic features. Our results define a role for Sox2 in cerebellar function and development, and identify a functional requirement for Sox2 within postnatal BG, of potential relevance for ataxia in mouse mutants, and in human patients.


Assuntos
Ataxia/metabolismo , Vermis Cerebelar/crescimento & desenvolvimento , Vermis Cerebelar/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Animais Recém-Nascidos , Ataxia/patologia , Células Cultivadas , Vermis Cerebelar/patologia , Regulação da Expressão Gênica/fisiologia , Ácido Glutâmico/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos Transgênicos , Mutação , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuroglia/patologia , Fatores de Transcrição Otx/metabolismo , Fatores de Transcrição SOXB1/genética , Transmissão Sináptica/fisiologia
6.
New Phytol ; 214(3): 1213-1229, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28186631

RESUMO

Plant secondary cell walls constitute the majority of plant biomass. They are predominantly found in xylem cells, which are derived from vascular initials during vascularization. Little is known about these processes in grass species despite their emerging importance as biomass feedstocks. The targeted biofuel crop Sorghum bicolor has a sequenced and well-annotated genome, making it an ideal monocot model for addressing vascularization and biomass deposition. Here we generated tissue-specific transcriptome and DNA methylome data from sorghum shoots, roots and developing root vascular and nonvascular tissues. Many genes associated with vascular development in other species show enriched expression in developing vasculature. However, several transcription factor families varied in vascular expression in sorghum compared with Arabidopsis and maize. Furthermore, differential expression of genes associated with DNA methylation were identified between vascular and nonvascular tissues, implying that changes in DNA methylation are a feature of sorghum root vascularization, which we confirmed using tissue-specific DNA methylome data. Roots treated with a DNA methylation inhibitor also showed a significant decrease in root length. Tissues and organs can be discriminated based on their genomic methylation patterns and methylation context. Consequently, tissue-specific changes in DNA methylation are part of the normal developmental process.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas , Feixe Vascular de Plantas/genética , Sorghum/genética , Parede Celular/genética , Sequência Conservada , Genes de Plantas , Raízes de Plantas/genética , Transcriptoma/genética
7.
Proc Natl Acad Sci U S A ; 111(44): 15827-32, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25267653

RESUMO

Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.


Assuntos
Arabidopsis , Clorófitas , Evolução Molecular , Regulação da Expressão Gênica de Plantas/fisiologia , Fitocromo , Transdução de Sinais/fisiologia , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Dados de Sequência Molecular , Filogenia , Fitocromo/biossíntese , Fitocromo/genética , Estrutura Terciária de Proteína , Transcriptoma/fisiologia
8.
Plant J ; 84(4): 800-15, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26426343

RESUMO

Panicum virgatum L. (switchgrass) is a polyploid, perennial grass species that is native to North America, and is being developed as a future biofuel feedstock crop. Switchgrass is present primarily in two ecotypes: a northern upland ecotype, composed of tetraploid and octoploid accessions, and a southern lowland ecotype, composed of primarily tetraploid accessions. We employed high-coverage exome capture sequencing (~2.4 Tb) to genotype 537 individuals from 45 upland and 21 lowland populations. From these data, we identified ~27 million single-nucleotide polymorphisms (SNPs), of which 1 590 653 high-confidence SNPs were used in downstream analyses of diversity within and between the populations. From the 66 populations, we identified five primary population groups within the upland and lowland ecotypes, a result that was further supported through genetic distance analysis. We identified conserved, ecotype-restricted, non-synonymous SNPs that are predicted to affect the protein function of CONSTANS (CO) and EARLY HEADING DATE 1 (EHD1), key genes involved in flowering, which may contribute to the phenotypic differences between the two ecotypes. We also identified, relative to the near-reference Kanlow population, 17 228 genes present in more copies than in the reference genome (up-CNVs), 112 630 genes present in fewer copies than in the reference genome (down-CNVs) and 14 430 presence/absence variants (PAVs), affecting a total of 9979 genes, including two upland-specific CNV clusters. In total, 45 719 genes were affected by an SNP, CNV, or PAV across the panel, providing a firm foundation to identify functional variation associated with phenotypic traits of interest for biofuel feedstock production.


Assuntos
Exoma/genética , Variação Genética , Panicum/genética , Análise de Sequência de DNA/métodos , Cromossomos de Plantas/genética , Variações do Número de Cópias de DNA , Ecossistema , Ecótipo , Genética Populacional , Genoma de Planta/genética , Genótipo , Geografia , Panicum/classificação , Panicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Poliploidia , Especificidade da Espécie , Estados Unidos
9.
BMC Genomics ; 16: 856, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26496746

RESUMO

BACKGROUND: The rapid development of sequencing technologies has provided access to environments that were either once thought inhospitable to life altogether or that contain too few cells to be analyzed using genomics approaches. While 16S rRNA gene microbial community sequencing has revolutionized our understanding of community composition and diversity over time and space, it only provides a crude estimate of microbial functional and metabolic potential. Alternatively, shotgun metagenomics allows comprehensive sampling of all genetic material in an environment, without any underlying primer biases. Until recently, one of the major bottlenecks of shotgun metagenomics has been the requirement for large initial DNA template quantities during library preparation. RESULTS: Here, we investigate the effects of varying template concentrations across three low biomass library preparation protocols on their ability to accurately reconstruct a mock microbial community of known composition. We analyze the effects of input DNA quantity and library preparation method on library insert size, GC content, community composition, assembly quality and metagenomic binning. We found that library preparation method and the amount of starting material had significant impacts on the mock community metagenomes. In particular, GC content shifted towards more GC rich sequences at the lower input quantities regardless of library prep method, the number of low quality reads that could not be mapped to the reference genomes increased with decreasing input quantities, and the different library preparation methods had an impact on overall metagenomic community composition. CONCLUSIONS: This benchmark study provides recommendations for library creation of representative and minimally biased metagenome shotgun sequencing, enabling insights into functional attributes of low biomass ecosystem microbial communities.


Assuntos
Metagenoma , Metagenômica , Microbiota , Archaea/genética , Bactérias/genética , Composição de Bases , Biomassa , Mapeamento de Sequências Contíguas , Biblioteca Gênica , Metagenômica/métodos , Análise de Sequência de DNA
10.
BMC Genomics ; 15: 549, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24984952

RESUMO

BACKGROUND: Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans. RESULTS: The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradation of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus. CONCLUSIONS: The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans, A. melanogenum, A. subglaciale and A. namibiae. The redundancy observed in several gene families can be linked to the nutritional versatility of these species and their particular stress tolerance. The availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Biotecnologia , Genômica , Análise de Sequência , Estresse Fisiológico/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Genoma Fúngico/genética , Humanos , Reprodução/genética , Especificidade da Espécie
11.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585764

RESUMO

Cohesin is required for chromatin loop formation. However, its precise role in regulating gene transcription remains largely unknown. We investigated the relationship between cohesin and RNA Polymerase II (RNAPII) using single-molecule mapping and live-cell imaging methods in human cells. Cohesin-mediated transcriptional loops were highly correlated with those of RNAPII and followed the direction of gene transcription. Depleting RAD21, a subunit of cohesin, resulted in the loss of long-range (>100 kb) loops between distal (super-)enhancers and promoters of cell-type-specific genes. By contrast, the short-range (<50 kb) loops were insensitive to RAD21 depletion and connected genes that are mostly housekeeping. This result explains why only a small fraction of genes are affected by the loss of long-range chromatin interactions due to cohesin depletion. Remarkably, RAD21 depletion appeared to up-regulate genes located in early initiation zones (EIZ) of DNA replication, and the EIZ signals were amplified drastically without RAD21. Our results revealed new mechanistic insights of cohesin's multifaceted roles in establishing transcriptional loops, preserving long-range chromatin interactions for cell-specific genes, and maintaining timely order of DNA replication.

12.
Nat Commun ; 14(1): 213, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639381

RESUMO

Connecting genes to their cis-regulatory elements has been enabled by genome-wide mapping of chromatin interactions using proximity ligation in ChIA-PET, Hi-C, and their derivatives. However, these methods require millions of input cells for high-quality data and thus are unsuitable for many studies when only limited cells are available. Conversely, epigenomic profiling via transposase digestion in ATAC-seq requires only hundreds to thousands of cells to robustly map open chromatin associated with transcription activity, but it cannot directly connect active genes to their distal enhancers. Here, we combine proximity ligation in ChIA-PET and transposase accessibility in ATAC-seq into ChIATAC to efficiently map interactions between open chromatin loci in low numbers of input cells. We validate ChIATAC in Drosophila cells and optimize it for mapping 3D epigenomes in human cells robustly. Applying ChIATAC to primary human T cells, we reveal mechanisms that topologically regulate transcriptional programs during T cell activation.


Assuntos
Epigenoma , Multiômica , Humanos , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico , Transposases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
13.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37300435

RESUMO

The Retinoid-related orphan receptor beta (RORß) gene encodes a developmental transcription factor and has 2 predominant isoforms created through alternative first exon usage; one specific to the retina and another present more broadly in the central nervous system, particularly regions involved in sensory processing. RORß belongs to the nuclear receptor family and plays important roles in cell fate specification in the retina and cortical layer formation. In mice, loss of RORß causes disorganized retina layers, postnatal degeneration, and production of immature cone photoreceptors. Hyperflexion or "high-stepping" of rear limbs caused by reduced presynaptic inhibition by Rorb-expressing inhibitory interneurons of the spinal cord is evident in RORß-deficient mice. RORß variants in patients are associated with susceptibility to various neurodevelopmental conditions, primarily generalized epilepsies, but including intellectual disability, bipolar, and autism spectrum disorders. The mechanisms by which RORß variants confer susceptibility to these neurodevelopmental disorders are unknown but may involve aberrant neural circuit formation and hyperexcitability during development. Here we report an allelic series in 5 strains of spontaneous Rorb mutant mice with a high-stepping gait phenotype. We show retinal abnormalities in a subset of these mutants and demonstrate significant differences in various behavioral phenotypes related to cognition. Gene expression analyses in all 5 mutants reveal a shared over-representation of the unfolded protein response and pathways related to endoplasmic reticulum stress, suggesting a possible mechanism of susceptibility relevant to patients.


Assuntos
Retina , Transcriptoma , Camundongos , Animais , Retina/metabolismo , Sistema Nervoso Central/metabolismo , Fenótipo , Marcha , Resposta a Proteínas não Dobradas/genética , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
14.
Cells ; 10(7)2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34359927

RESUMO

The transcription factor SOX2 is important for brain development and for neural stem cells (NSC) maintenance. Sox2-deleted (Sox2-del) NSC from neonatal mouse brain are lost after few passages in culture. Two highly expressed genes, Fos and Socs3, are strongly downregulated in Sox2-del NSC; we previously showed that Fos or Socs3 overexpression by lentiviral transduction fully rescues NSC's long-term maintenance in culture. Sox2-del NSC are severely defective in neuronal production when induced to differentiate. NSC rescued by Sox2 reintroduction correctly differentiate into neurons. Similarly, Fos transduction rescues normal or even increased numbers of immature neurons expressing beta-tubulinIII, but not more differentiated markers (MAP2). Additionally, many cells with both beta-tubulinIII and GFAP expression appear, indicating that FOS stimulates the initial differentiation of a "mixed" neuronal/glial progenitor. The unexpected rescue by FOS suggested that FOS, a SOX2 transcriptional target, might act on neuronal genes, together with SOX2. CUT&RUN analysis to detect genome-wide binding of SOX2, FOS, and JUN (the AP1 complex) revealed that a high proportion of genes expressed in NSC are bound by both SOX2 and AP1. Downregulated genes in Sox2-del NSC are highly enriched in genes that are also expressed in neurons, and a high proportion of the "neuronal" genes are bound by both SOX2 and AP1.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Genoma , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição AP-1/genética , Animais , Sequência de Bases , Diferenciação Celular/genética , Regulação para Baixo/genética , Deleção de Genes , Lentivirus/metabolismo , Camundongos , Modelos Biológicos , Neuroglia/metabolismo , Neurônios/metabolismo , RNA-Seq , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fator de Transcrição AP-1/metabolismo
15.
Commun Med (Lond) ; 1: 33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602196

RESUMO

Background: It is estimated that up to 80% of infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are asymptomatic and asymptomatic patients can still effectively transmit the virus and cause disease. While much of the effort has been placed on decoding single nucleotide variation in SARS-CoV-2 genomes, considerably less is known about their transcript variation and any correlation with clinical severity in human hosts, as defined here by the presence or absence of symptoms. Methods: To assess viral genomic signatures of disease severity, we conducted a systematic characterization of SARS-CoV-2 transcripts and genetic variants in 81 clinical specimens collected from symptomatic and asymptomatic individuals using multi-scale transcriptomic analyses including amplicon-seq, short-read metatranscriptome and long-read Iso-seq. Results: Here we show a highly coordinated and consistent pattern of sgRNA expression from individuals with robust SARS-CoV-2 symptomatic infection and their expression is significantly repressed in the asymptomatic infections. We also observe widespread inter- and intra-patient variants in viral RNAs, known as quasispecies frequently found in many RNA viruses. We identify unique sets of deletions preferentially found primarily in symptomatic individuals, with many likely to confer changes in SARS-CoV-2 virulence and host responses. Moreover, these frequently occurring structural variants in SARS-CoV-2 genomes serve as a mechanism to further induce SARS-CoV-2 proteome complexity. Conclusions: Our results indicate that differential sgRNA expression and structural mutational burden are highly correlated with the clinical severity of SARS-CoV-2 infection. Longitudinally monitoring sgRNA expression and structural diversity could further guide treatment responses, testing strategies, and vaccine development.

16.
Cancer Cell ; 39(5): 694-707.e7, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33836152

RESUMO

Extrachromosomal, circular DNA (ecDNA) is emerging as a prevalent yet less characterized oncogenic alteration in cancer genomes. We leverage ChIA-PET and ChIA-Drop chromatin interaction assays to characterize genome-wide ecDNA-mediated chromatin contacts that impact transcriptional programs in cancers. ecDNAs in glioblastoma patient-derived neurosphere and prostate cancer cell cultures are marked by widespread intra-ecDNA and genome-wide chromosomal interactions. ecDNA-chromatin contact foci are characterized by broad and high-level H3K27ac signals converging predominantly on chromosomal genes of increased expression levels. Prostate cancer cells harboring synthetic ecDNA circles composed of characterized enhancers result in the genome-wide activation of chromosomal gene transcription. Deciphering the chromosomal targets of ecDNAs at single-molecule resolution reveals an association with actively expressed oncogenes spatially clustered within ecDNA-directed interaction networks. Our results suggest that ecDNA can function as mobile transcriptional enhancers to promote tumor progression and manifest a potential synthetic aneuploidy mechanism of transcription control in cancer.


Assuntos
Cromossomos/genética , DNA de Neoplasias/genética , Glioblastoma/genética , Oncogenes/genética , Carcinogênese/genética , Cromatina/genética , Humanos
17.
Nat Genet ; 53(10): 1456-1468, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594038

RESUMO

Glioma intratumoral heterogeneity enables adaptation to challenging microenvironments and contributes to therapeutic resistance. We integrated 914 single-cell DNA methylomes, 55,284 single-cell transcriptomes and bulk multi-omic profiles across 11 adult IDH mutant or IDH wild-type gliomas to delineate sources of intratumoral heterogeneity. We showed that local DNA methylation disorder is associated with cell-cell DNA methylation differences, is elevated in more aggressive tumors, links with transcriptional disruption and is altered during the environmental stress response. Glioma cells under in vitro hypoxic and irradiation stress increased local DNA methylation disorder and shifted cell states. We identified a positive association between genetic and epigenetic instability that was supported in bulk longitudinally collected DNA methylation data. Increased DNA methylation disorder associated with accelerated disease progression and recurrently selected DNA methylation changes were enriched for environmental stress response pathways. Our work identified an epigenetically facilitated adaptive stress response process and highlights the importance of epigenetic heterogeneity in shaping therapeutic outcomes.


Assuntos
Neoplasias Encefálicas/genética , Plasticidade Celular/genética , Epigênese Genética , Glioma/genética , Análise de Célula Única , Estresse Fisiológico/genética , Evolução Clonal , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Genoma Humano , Humanos , Mutação/genética , Filogenia , Regiões Promotoras Genéticas/genética , Microambiente Tumoral/genética
18.
Nat Genet ; 52(3): 264-272, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094912

RESUMO

Lineage-specific gene expression is modulated by a balance between transcriptional activation and repression during animal development. Knowledge about enhancer-centered transcriptional activation has advanced considerably, but silencers and their roles in normal development remain poorly understood. Here, we performed chromatin interaction analyses of Polycomb repressive complex 2 (PRC2), a key inducer of transcriptional gene silencing, to uncover silencers, their molecular identity and associated chromatin connectivity. Systematic analysis of cis-regulatory silencer elements reveals their chromatin features and gene-targeting specificity. Deletion of certain PRC2-bound silencers in mice results in transcriptional derepression of their interacting genes and pleiotropic developmental phenotypes, including embryonic lethality. While some PRC2-bound elements function as silencers in pluripotent cells, they can transition into active tissue-specific enhancers during development, highlighting their regulatory versatility. Our study characterizes the molecular profile of silencers and their associated chromatin architectures, and suggests the possibility of targeted reactivation of epigenetically silenced genes.


Assuntos
Cromatina/genética , Elementos Facilitadores Genéticos/genética , Inativação Gênica , Complexo Repressor Polycomb 2/metabolismo , Proteínas Repressoras/metabolismo , Elementos Silenciadores Transcricionais/genética , Animais , Linhagem Celular , Feminino , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Especificidade de Órgãos , Fenótipo , Complexo Repressor Polycomb 2/genética , Proteínas Repressoras/genética , Ativação Transcricional
19.
Biotechnol Biofuels ; 13: 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32313551

RESUMO

BACKGROUND: Understanding how fungi degrade lignocellulose is a cornerstone of improving renewables-based biotechnology, in particular for the production of hydrolytic enzymes. Considerable progress has been made in investigating fungal degradation during time-points where CAZyme expression peaks. However, a robust understanding of the fungal survival strategies over its life time on lignocellulose is thereby missed. Here we aimed to uncover the physiological responses of the biotechnological workhorse and enzyme producer Aspergillus niger over its life time to six substrates important for biofuel production. RESULTS: We analysed the response of A. niger to the feedstock Miscanthus and compared it with our previous study on wheat straw, alone or in combination with hydrothermal or ionic liquid feedstock pretreatments. Conserved (substrate-independent) metabolic responses as well as those affected by pretreatment and feedstock were identified via multivariate analysis of genome-wide transcriptomics combined with targeted transcript and protein analyses and mapping to a metabolic model. Initial exposure to all substrates increased fatty acid beta-oxidation and lipid metabolism transcripts. In a strain carrying a deletion of the ortholog of the Aspergillus nidulans fatty acid beta-oxidation transcriptional regulator farA, there was a reduction in expression of selected lignocellulose degradative CAZyme-encoding genes suggesting that beta-oxidation contributes to adaptation to lignocellulose. Mannan degradation expression was wheat straw feedstock-dependent and pectin degradation was higher on the untreated substrates. In the later life stages, known and novel secondary metabolite gene clusters were activated, which are of high interest due to their potential to synthesize bioactive compounds. CONCLUSION: In this study, which includes the first transcriptional response of Aspergilli to Miscanthus, we highlighted that life time as well as substrate composition and structure (via variations in pretreatment and feedstock) influence the fungal responses to lignocellulose. We also demonstrated that the fungal response contains physiological stages that are conserved across substrates and are typically found outside of the conditions with high CAZyme expression, as exemplified by the stages that are dominated by lipid and secondary metabolism.

20.
Cancer Cell ; 37(2): 243-257.e7, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32049048

RESUMO

Sporadic gliomas in companion dogs provide a window on the interaction between tumorigenic mechanisms and host environment. We compared the molecular profiles of canine gliomas with those of human pediatric and adult gliomas to characterize evolutionarily conserved mammalian mutational processes in gliomagenesis. Employing whole-genome, exome, transcriptome, and methylation sequencing of 83 canine gliomas, we found alterations shared between canine and human gliomas such as the receptor tyrosine kinases, TP53 and cell-cycle pathways, and IDH1 R132. Canine gliomas showed high similarity with human pediatric gliomas per robust aneuploidy, mutational rates, relative timing of mutations, and DNA-methylation patterns. Our cross-species comparative genomic analysis provides unique insights into glioma etiology and the chronology of glioma-causing somatic alterations.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA/genética , Glioma/genética , Mutação/genética , Animais , Cães , Exoma/genética , Humanos , Isocitrato Desidrogenase/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA