Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(43): e2212114119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252025

RESUMO

Quantum mechanics revolutionized chemists' understanding of molecular structure. In contrast, the kinetics of molecular reactions in solution are well described by classical, statistical theories. To reveal how the dynamics of chemical systems transition from quantum to classical, we study femtosecond proton transfer in a symmetric molecule with two identical reactant sites that are spatially apart. With the reaction launched from a superposition of two local basis states, we hypothesize that the ensuing motions of the electrons and nuclei will proceed, conceptually, in lockstep as a superposition of probability amplitudes until decoherence collapses the system to a product. Using ultrafast spectroscopy, we observe that the initial superposition state affects the reaction kinetics by an interference mechanism. With the aid of a quantum dynamics model, we propose how the evolution of nuclear wavepackets manifests the unusual intersite quantum correlations during the reaction.


Assuntos
Elétrons , Prótons , Cinética , Estrutura Molecular , Física , Teoria Quântica
2.
J Am Chem Soc ; 136(35): 12217-20, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25127420

RESUMO

While olefin amination with aminium radical cations is a classical method for C-N bond formation, catalytic variants that utilize simple 2° amine precursors remain largely undeveloped. Herein we report a new visible-light photoredox protocol for the intramolecular anti-Markovnikov hydroamination of aryl olefins that proceeds through catalytically generated aminium radical intermediates. Mechanistic studies are consistent with a process involving amine oxidation via electron transfer, turnover-limiting C-N bond formation, and a second electron transfer step to reduce a carbon-centered radical, rendering the overall process redox-neutral. A range of structurally diverse N-aryl heterocycles can be prepared in good to excellent yields under conditions significantly milder than those required by conventional aminium-based protocols.

3.
J Org Chem ; 77(1): 17-46, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22168233

RESUMO

A full account of the development of the base-mediated intramolecular Diels-Alder cycloadditions of tryptamine-derived Zincke aldehydes is described. This important complexity-generating transformation provides the tetracyclic core of many indole monoterpene alkaloids in only three steps from commercially available starting materials and played a key role in short syntheses of norfluorocurarine (five steps), dehydrodesacetylretuline (six steps), valparicine (seven steps), and strychnine (six steps). Reasonable mechanistic possibilities for this reaction, a surprisingly facile dimerization of the products, and an unexpected cycloreversion to regenerate Zincke aldehydes under specific conditions are also discussed.


Assuntos
Aldeídos/química , Alcaloides Indólicos/síntese química , Estricnina/síntese química , Tubocurarina/análogos & derivados , Ciclização , Dimerização , Alcaloides Indólicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estricnina/química , Tubocurarina/síntese química , Tubocurarina/química
4.
Anal Chem ; 82(5): 2048-58, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20146449

RESUMO

Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of organic aerosol (OA) samples collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. In this study, DESI-MS and tandem mass spectrometry experiments (MS/MS) were used to examine chemical aging of SOA produced by the ozonolysis of limonene (LSOA) in the presence of gaseous ammonia. Exposure of LSOA to ammonia resulted in measurable changes in the optical properties of the sample observed using ultraviolet (UV)-visible spectroscopy. High-resolution DESI-MS analysis demonstrated that chemical aging results in formation of highly conjugated nitrogen-containing species that are most likely responsible for light-absorbing properties of the aged LSOA. Detailed analysis of the experimental data allowed us to identify several key aging reactions, including the transformation of carbonyls to imines, intramolecular dimerization of imines with other carbonyl compounds in SOA, and intermolecular cyclization of imines. This study presents an important step toward understanding the formation of light-absorbing OA (brown carbon) in the atmosphere.


Assuntos
Aerossóis/análise , Compostos Orgânicos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA