Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004146

RESUMO

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Assuntos
Hipocampo/citologia , Neocórtex/citologia , Transcriptoma/genética , Animais , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Cell ; 179(3): 713-728.e17, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626771

RESUMO

The ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) contains ∼4,000 neurons that project to multiple targets and control innate social behaviors including aggression and mounting. However, the number of cell types in VMHvl and their relationship to connectivity and behavioral function are unknown. We performed single-cell RNA sequencing using two independent platforms-SMART-seq (∼4,500 neurons) and 10x (∼78,000 neurons)-and investigated correspondence between transcriptomic identity and axonal projections or behavioral activation, respectively. Canonical correlation analysis (CCA) identified 17 transcriptomic types (T-types), including several sexually dimorphic clusters, the majority of which were validated by seqFISH. Immediate early gene analysis identified T-types exhibiting preferential responses to intruder males versus females but only rare examples of behavior-specific activation. Unexpectedly, many VMHvl T-types comprise a mixed population of neurons with different projection target preferences. Overall our analysis revealed that, surprisingly, few VMHvl T-types exhibit a clear correspondence with behavior-specific activation and connectivity.


Assuntos
Hipotálamo/citologia , Neurônios/classificação , Comportamento Social , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Comportamento Sexual Animal , Análise de Célula Única , Transcriptoma
3.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007418

RESUMO

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Assuntos
Encéfalo/metabolismo , Técnicas de Inativação de Genes/métodos , Genes Reporter , Animais , Encéfalo/citologia , Cálcio/metabolismo , Linhagem Celular , Hibridização in Situ Fluorescente , Luz , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Neurônios/metabolismo , Optogenética , RNA não Traduzido/genética , Transgenes/genética
4.
Nature ; 597(7878): 666-671, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588666

RESUMO

The use of non-fullerene acceptors (NFAs) in organic solar cells has led to power conversion efficiencies as high as 18%1. However, organic solar cells are still less efficient than inorganic solar cells, which typically have power conversion efficiencies of more than 20%2. A key reason for this difference is that organic solar cells have low open-circuit voltages relative to their optical bandgaps3, owing to non-radiative recombination4. For organic solar cells to compete with inorganic solar cells in terms of efficiency, non-radiative loss pathways must be identified and suppressed. Here we show that in most organic solar cells that use NFAs, the majority of charge recombination under open-circuit conditions proceeds via the formation of non-emissive NFA triplet excitons; in the benchmark PM6:Y6 blend5, this fraction reaches 90%, reducing the open-circuit voltage by 60 mV. We prevent recombination via this non-radiative channel by engineering substantial hybridization between the NFA triplet excitons and the spin-triplet charge-transfer excitons. Modelling suggests that the rate of back charge transfer from spin-triplet charge-transfer excitons to molecular triplet excitons may be reduced by an order of magnitude, enabling re-dissociation of the spin-triplet charge-transfer exciton. We demonstrate NFA systems in which the formation of triplet excitons is suppressed. This work thus provides a design pathway for organic solar cells with power conversion efficiencies of 20% or more.

5.
Nature ; 598(7879): 174-181, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616072

RESUMO

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Assuntos
Encéfalo/citologia , Forma Celular , Neurônios/classificação , Neurônios/metabolismo , Análise de Célula Única , Atlas como Assunto , Biomarcadores/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neocórtex/anatomia & histologia , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/metabolismo , Neurogênese , Neuroglia/citologia , Neurônios/citologia , RNA-Seq , Reprodutibilidade dos Testes
6.
Nature ; 598(7879): 103-110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616066

RESUMO

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.


Assuntos
Epigenômica , Perfilação da Expressão Gênica , Córtex Motor/citologia , Neurônios/classificação , Análise de Célula Única , Transcriptoma , Animais , Atlas como Assunto , Conjuntos de Dados como Assunto , Epigênese Genética , Feminino , Masculino , Camundongos , Córtex Motor/anatomia & histologia , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Reprodutibilidade dos Testes
7.
Nature ; 573(7772): 61-68, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435019

RESUMO

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.


Assuntos
Astrócitos/classificação , Evolução Biológica , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neurônios/classificação , Adolescente , Adulto , Idoso , Animais , Astrócitos/citologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Inibição Neural , Neurônios/citologia , Análise de Componente Principal , RNA-Seq , Análise de Célula Única , Especificidade da Espécie , Transcriptoma/genética , Adulto Jovem
8.
Clin Sci (Lond) ; 138(1): 1-21, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38180064

RESUMO

Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Transdução de Sinais , Ácidos e Sais Biliares , Metabolismo Energético , Proteínas de Membrana Transportadoras , Doenças Cardiovasculares/tratamento farmacológico
9.
Chem Rev ; 122(4): 4791-4825, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34714064

RESUMO

Microbial bioelectronics require interfacing microorganisms with electrodes. The resulting abiotic/biotic platforms provide the basis of a range of technologies, including energy conversion and diagnostic assays. Organic semiconductors (OSCs) provide a unique strategy to modulate the interfaces between microbial systems and external electrodes, thereby improving the performance of these incipient technologies. In this review, we explore recent progress in the field on how OSCs, and related materials capable of charge transport, are being used within the context of microbial systems, and more specifically bacteria. We begin by examining the electrochemical communication modes in bacteria and the biological basis for charge transport. Different types of synthetic organic materials that have been designed and synthesized for interfacing and interrogating bacteria are discussed next, followed by the most commonly used characterization techniques for evaluating transport in microbial, synthetic, and hybrid systems. A range of applications is subsequently examined, including biological sensors and energy conversion systems. The review concludes by summarizing what has been accomplished so far and suggests future design approaches for OSC bioelectronics materials and technologies that hybridize characteristic properties of microbial and OSC systems.


Assuntos
Bactérias , Semicondutores , Eletrodos
10.
Nature ; 563(7729): 79-84, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30382200

RESUMO

Activity in the motor cortex predicts movements, seconds before they are initiated. This preparatory activity has been observed across cortical layers, including in descending pyramidal tract neurons in layer 5. A key question is how preparatory activity is maintained without causing movement, and is ultimately converted to a motor command to trigger appropriate movements. Here, using single-cell transcriptional profiling and axonal reconstructions, we identify two types of pyramidal tract neuron. Both types project to several targets in the basal ganglia and brainstem. One type projects to thalamic regions that connect back to motor cortex; populations of these neurons produced early preparatory activity that persisted until the movement was initiated. The second type projects to motor centres in the medulla and mainly produced late preparatory activity and motor commands. These results indicate that two types of motor cortex output neurons have specialized roles in motor control.


Assuntos
Vias Eferentes/citologia , Vias Eferentes/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Movimento/fisiologia , Animais , Gânglios da Base/citologia , Tronco Encefálico/citologia , Ácido Glutâmico/metabolismo , Bulbo/citologia , Camundongos , Neurônios/metabolismo , Células Piramidais/classificação , Células Piramidais/fisiologia , Análise de Célula Única , Transcriptoma
11.
Nature ; 563(7729): 72-78, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30382198

RESUMO

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.


Assuntos
Perfilação da Expressão Gênica , Neocórtex/citologia , Neocórtex/metabolismo , Animais , Biomarcadores/análise , Feminino , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Córtex Motor/anatomia & histologia , Córtex Motor/citologia , Córtex Motor/metabolismo , Neocórtex/anatomia & histologia , Especificidade de Órgãos , Análise de Sequência de RNA , Análise de Célula Única , Córtex Visual/anatomia & histologia , Córtex Visual/citologia , Córtex Visual/metabolismo
12.
Nature ; 545(7655): 477-481, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514446

RESUMO

In humans and other mammalian species, lesions in the preoptic area of the hypothalamus cause profound sleep impairment, indicating a crucial role of the preoptic area in sleep generation. However, the underlying circuit mechanism remains poorly understood. Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus. Pharmacogenetic activation of c-Fos-labelled sleep-active neurons has been shown to induce sleep. However, the sleep-active neurons are spatially intermingled with wake-active neurons, making it difficult to target the sleep neurons specifically for circuit analysis. Here we identify a population of preoptic area sleep neurons on the basis of their projection target and discover their molecular markers. Using a lentivirus expressing channelrhodopsin-2 or a light-activated chloride channel for retrograde labelling, bidirectional optogenetic manipulation, and optrode recording, we show that the preoptic area GABAergic neurons projecting to the tuberomammillary nucleus are both sleep active and sleep promoting. Furthermore, translating ribosome affinity purification and single-cell RNA sequencing identify candidate markers for these neurons, and optogenetic and pharmacogenetic manipulations demonstrate that several peptide markers (cholecystokinin, corticotropin-releasing hormone, and tachykinin 1) label sleep-promoting neurons. Together, these findings provide easy genetic access to sleep-promoting preoptic area neurons and a valuable entry point for dissecting the sleep control circuit.


Assuntos
Técnicas de Rastreamento Neuroanatômico , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Sono/fisiologia , Transcriptoma , Animais , Biomarcadores/análise , Channelrhodopsins , Canais de Cloreto/metabolismo , Canais de Cloreto/efeitos da radiação , Colecistocinina/análise , Colecistocinina/genética , Hormônio Liberador da Corticotropina/análise , Hormônio Liberador da Corticotropina/genética , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos da radiação , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Optogenética , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/efeitos da radiação , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Sono/efeitos dos fármacos , Sono/efeitos da radiação , Taquicininas/análise , Taquicininas/genética , Vigília/fisiologia , Vigília/efeitos da radiação
13.
Ann Vasc Surg ; 96: 292-300, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37003357

RESUMO

BACKGROUND: Popliteal artery injuries are uncommon and often result in limb loss or long-term limb dysfunction. The aims of this study were (1) to evaluate the association between predictors and outcomes and (2) to validate the rational of systematic early fasciotomy. METHODS: This retrospective cohort study included 122 patients (80% men, n = 100) who underwent surgery for popliteal artery injuries from October 2018 to March 2021 in southern Vietnam. Primary outcomes included primary and secondary amputation. The associations between predictors and primary amputation were analyzed using logistic regression models. RESULTS: Among the 122 patients, 11 (9%) underwent primary amputation, while 2 (1.6%) had secondary amputation. Longer time to surgery was associated with increased odds of amputation (odds ratio = 1.65; 95% confidence interval, 1.2 to 2.2 for every 6 hr). Severe limb ischemia was also associated with a 50-fold increase in the risk of primary amputation (adjusted odds ratio = 49.9; 95% confidence interval, 6 to 418, P = 0.001). Furthermore, 11 patients (9%) without signs of severe limb ischemia and acute compartment syndrome on admission were found to have myonecrosis of at least one muscle compartment during fasciotomy. CONCLUSIONS: The data suggest that among patients with popliteal artery injuries, prolonged time before surgery and severe limb ischemia are associated with increased risk of primary amputation, whereas early fasciotomy may lead to improved outcomes.


Assuntos
Artéria Poplítea , Lesões do Sistema Vascular , Masculino , Humanos , Feminino , Artéria Poplítea/diagnóstico por imagem , Artéria Poplítea/cirurgia , Artéria Poplítea/lesões , Fasciotomia/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Lesões do Sistema Vascular/diagnóstico por imagem , Lesões do Sistema Vascular/etiologia , Lesões do Sistema Vascular/cirurgia , Isquemia/diagnóstico por imagem , Isquemia/cirurgia
14.
Proc Natl Acad Sci U S A ; 117(12): 6391-6397, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152093

RESUMO

Flexible organic photovoltaics (OPVs) are promising power sources for wearable electronics. However, it is challenging to simultaneously achieve high efficiency as well as good stability under various stresses. Herein, we demonstrate the fabrication of highly efficient (efficiency, 13.2%) and stable OPVs based on nonfullerene blends by a single-step postannealing treatment. The device performance decreases dramatically after annealing at 90 °C and is fully recovered after annealing at 150 °C. Glass-encapsulated annealed OPVs show good environmental stability with 4.8% loss in efficiency after 4,736 h and an estimated T 80 lifetime (80% of the initial power conversion efficiency) of over 20,750 h in the dark under ambient condition and T 80 lifetime of 1,050 h at 85 °C and 30% relative humidity. This environmental stability is enabled by the synergetic effect of the stable morphology of donor/acceptor blends and thermally stabilized interfaces due to doping. Furthermore, the high efficiency and good stability are almost 100% retained in ultraflexible OPVs and minimodules which are mechanically robust and have long-term operation capability and thus are promising for future self-powered and wearable electronics.

15.
Entropy (Basel) ; 24(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36359652

RESUMO

The main goal of group testing is to identify a small number of specific items among a large population of items. In this paper, we consider specific items as positives and inhibitors and non-specific items as negatives. In particular, we consider a novel model called group testing with blocks of positives and inhibitors. A test on a subset of items is positive if the subset contains at least one positive and does not contain any inhibitors, and it is negative otherwise. In this model, the input items are linearly ordered, and the positives and inhibitors are subsets of small blocks (at unknown locations) of consecutive items over that order. We also consider two specific instantiations of this model. The first instantiation is that model that contains a single block of consecutive items consisting of exactly known numbers of positives and inhibitors. The second instantiation is the model that contains a single block of consecutive items containing known numbers of positives and inhibitors. Our contribution is to propose efficient encoding and decoding schemes such that the numbers of tests used to identify only positives or both positives and inhibitors are less than the ones in the state-of-the-art schemes. Moreover, the decoding times mostly scale to the numbers of tests that are significantly smaller than the state-of-the-art ones, which scale to both the number of tests and the number of items.

16.
Cancer ; 127(24): 4694-4701, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34432293

RESUMO

BACKGROUND: Agitated delirium is common and highly distressing. Medications are often needed to reduce agitation, but it is unclear what the desired level of sedation is. This study assessed personalized sedation goals (PSGs) and their predictors for patients in a delirium clinical trial and in clinical vignettes. METHODS: This was a preplanned secondary analysis of a double-blind randomized clinical trial examining the sedative effect of chlorpromazine and/or haloperidol in patients with agitated delirium. At the baseline, caregivers and nurses were independently asked to select the PSG for the trial patient from 5 choices corresponding to Richmond Agitation Sedation Scale (RASS) scores of 0 or higher (no sedation), -1 to -2, -3, -4, and -5 (deep sedation). Respondents also selected a PSG for 6 vignettes that differed by the level of agitation, ability to communicate, and survival. RESULTS: Forty-two caregivers and 39 nurses answered questions regarding PSGs. For the trial patient, caregivers preferred RASS scores of -1 to -2 most often (36%), whereas nurses preferred an RASS score of -3 most often (51 %). Caregivers were significantly more likely than nurses to choose lighter sedation (odds ratio [OR], 4.8; P = .01) despite reporting greater delirium-related distress (P = .0006). Patients were undersedated 33% to 53% of the time and oversedated 0% to 15% of the time according to the PSG response criteria. In the case vignettes, deeper sedation was preferred by nurses (P < .0001) and for patients who were unable to communicate (OR, 3.1-4.4; P < .0001) and had a shorter life expectancy (OR, 1.7; P = .002). CONCLUSIONS: Caregivers often preferred lighter sedation than nurses. Many patients were undersedated in comparison with caregivers' PSGs, and this highlights room for improvement. LAY SUMMARY: In the last days of life, many patients with cancer develop delirium and become restless/agitated; this can be highly distressing. Caregivers and physicians alike are often concerned about the use of sedatives for agitated delirium and try to find a balance between maximizing comfort and maintaining communication. This study examined the concept of a personalized sedation goal for setting an individualized target for the level of sedation. Caregivers often preferred lighter sedation than nurses. Many patients were undersedated in comparison with caregivers' stated goals, and this highlights room for improvement.


Assuntos
Delírio , Neoplasias , Comunicação , Delírio/tratamento farmacológico , Objetivos , Haloperidol/uso terapêutico , Humanos , Hipnóticos e Sedativos/uso terapêutico , Unidades de Terapia Intensiva , Neoplasias/complicações , Neoplasias/tratamento farmacológico
17.
Opt Express ; 29(15): 24349-24362, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614682

RESUMO

Fluorescence microscopy benefits from spatially and temporally homogeneous illumination with the illumination area matched to the shape and size of the camera sensor. Fiber-coupled illumination schemes have the added benefit of straightforward and robust alignment and ease of installation compared to free-space coupled illumination. Commercial and open-source fiber-coupled, homogenized illumination schemes have recently become available to the public; however, there have been no published comparisons of speckle reduction schemes to date. We characterize three different multimode fibers in combination with two laser speckle reduction devices and compare spatial and temporal profiles to a commercial unit. This work yields a new design, the EvenField Illuminator, which is freely available for researchers to integrate into their own imaging systems.

18.
Proc Natl Acad Sci U S A ; 115(18): 4589-4594, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666257

RESUMO

Flexible photovoltaics with extreme mechanical compliance present appealing possibilities to power Internet of Things (IoT) sensors and wearable electronic devices. Although improvement in thermal stability is essential, simultaneous achievement of high power conversion efficiency (PCE) and thermal stability in flexible organic photovoltaics (OPVs) remains challenging due to the difficulties in maintaining an optimal microstructure of the active layer under thermal stress. The insufficient thermal capability of a plastic substrate and the environmental influences cannot be fully expelled by ultrathin barrier coatings. Here, we have successfully fabricated ultraflexible OPVs with initial efficiencies of up to 10% that can endure temperatures of over 100 °C, maintaining 80% of the initial efficiency under accelerated testing conditions for over 500 hours in air. Particularly, we introduce a low-bandgap poly(benzodithiophene-cothieno[3,4-b]thiophene) (PBDTTT) donor polymer that forms a sturdy microstructure when blended with a fullerene acceptor. We demonstrate a feasible way to adhere ultraflexible OPVs onto textiles through a hot-melt process without causing severe performance degradation.

19.
Lancet Oncol ; 21(7): 989-998, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32479786

RESUMO

BACKGROUND: The role of neuroleptics for terminal agitated delirium is controversial. We assessed the effect of three neuroleptic strategies on refractory agitation in patients with cancer with terminal delirium. METHODS: In this single-centre, double-blind, parallel-group, randomised trial, patients with advanced cancer, aged at least 18 years, admitted to the palliative and supportive care unit at the University of Texas MD Anderson Cancer Center (Houston, TX, USA), with refractory agitation, despite low-dose haloperidol, were randomly assigned to receive intravenous haloperidol dose escalation at 2 mg every 4 h, neuroleptic rotation with chlorpromazine at 25 mg every 4 h, or combined haloperidol at 1 mg and chlorpromazine at 12·5 mg every 4 h, until death or discharge. Rescue doses identical to the scheduled doses were administered at inception, and then hourly as needed. Permuted block randomisation (block size six; 1:1:1) was done, stratified by baseline Richmond Agitation Sedation Scale (RASS) scores. Research staff, clinicians, patients, and caregivers were masked to group assignment. The primary outcome was change in RASS score from time 0 to 24 h. Comparisons among group were done by modified intention-to-treat analysis. This completed study is registered with ClinicalTrials.gov, NCT03021486. FINDINGS: Between July 5, 2017, and July 1, 2019, 998 patients were screened for eligibility, with 68 being enrolled and randomly assigned to treatment; 45 received the masked study interventions (escalation n=15, rotation n=16, combination n=14). RASS score decreased significantly within 30 min and remained low at 24 h in the escalation group (n=10, mean RASS score change between 0 h and 24 h -3·6 [95% CI -5·0 to -2·2]), rotation group (n=11, -3·3 [-4·4 to -2·2]), and combination group (n=10, -3·0 [-4·6 to -1·4]), with no difference among groups (p=0·71). The most common serious toxicity was hypotension (escalation n=6 [40%], rotation n=5 [31%], combination n=3 [21%]); there were no treatment-related deaths. INTERPRETATION: Our data provide preliminary evidence that the three strategies of neuroleptics might reduce agitation in patients with terminal agitation. These findings are in the context of the single-centre design, small sample size, and lack of a placebo-only group. FUNDING: National Institute of Nursing Research.


Assuntos
Antipsicóticos/uso terapêutico , Delírio/tratamento farmacológico , Haloperidol/uso terapêutico , Neoplasias/complicações , Cuidados Paliativos , Agitação Psicomotora/tratamento farmacológico , Idoso , Delírio/etiologia , Delírio/patologia , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/psicologia , Neoplasias/terapia , Prognóstico , Agitação Psicomotora/etiologia , Agitação Psicomotora/patologia
20.
Nat Mater ; 18(12): 1327-1334, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527809

RESUMO

Precise doping of organic semiconductors allows control over the conductivity of these materials, an essential parameter in electronic applications. Although Lewis acids have recently shown promise as dopants for solution-processed polymers, their doping mechanism is not yet fully understood. In this study, we found that B(C6F5)3 is a superior dopant to the other Lewis acids investigated (BF3, BBr3 and AlCl3). Experiments indicate that Lewis acid-base adduct formation with polymers inhibits the doping process. Electron-nuclear double-resonance and nuclear magnetic resonance experiments, together with density functional theory, show that p-type doping occurs by generation of a water-Lewis acid complex with substantial Brønsted acidity, followed by protonation of the polymer backbone and electron transfer from a neutral chain segment to a positively charged, protonated one. This study provides insight into a potential path for protonic acid doping and shows how trace levels of water can transform Lewis acids into powerful Brønsted acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA