Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(24): e2310587, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546418

RESUMO

The process of N-doping is frequently employed to enhance the properties of carbon quantum dots. However, the precise requirements for nitrogen precursors in producing high-quality N-doped carbon quantum dots (NCQDs) remain undefined. This research systematically examines the influence of various nitrogen dopants on the morphology, optical features, and band structure of NCQDs. The dots are synthesized using an efficient, eco- friendly, and rapid continuous hydrothermal flow technique. This method offers unparalleled control over synthesis and doping, while also eliminating convention-related issues. Citric acid is used as the carbon source, and urea, trizma base, beta-alanine, L-arginine, and EDTA are used as nitrogen sources. Notably, urea and trizma produced NCQDs with excitation-independent fluorescence, high quantum yields (up to 40%), and uniform dots with narrow particle size distributions. Density functional theory (DFT) and time-dependent DFT modelling established that defects and substituents within the graphitic structure have a more significant impact on the NCQDs' electronic structure than nitrogen-containing functional groups. Importantly, for the first time, this work demonstrates that the conventional approach of modelling single-layer structures is insufficient, but two layers suffice for replicating experimental data. This study, therefore, provides essential guidance on the selection of nitrogen precursors for NCQD customization for diverse applications.

2.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805899

RESUMO

The ability of TiO2 to generate reactive oxygen species under UV radiation makes it an efficient candidate in antimicrobial studies. In this context, the preparation of TiO2 microparticles coated with Ca- and Cu-based composite layers over which Cu(II), Cu(I), and Cu(0) species were identified is presented here. The obtained materials were characterized by a wide range of analytical methods, such as X-ray diffraction, electron microscopy (TEM, SEM), X-ray photoelectron (XPS), and UV-VIS spectroscopy. The antimicrobial efficiency was evaluated using qualitative and quantitative standard methods and standard clinical microbial strains. A significant aspect of this composite is that the antimicrobial properties were evidenced both in the presence and absence of the light, as result of competition between photo and electrical effects. However, the antibacterial effect was similar in darkness and light for all samples. Because no photocatalytic properties were found in the absence of copper, the results sustain the antibacterial effect of the electric field (generated by the electrostatic potential of the composite layer) both under the dark and in light conditions. In this way, the composite layers supported on the TiO2 microparticles' surface can offer continuous antibacterial protection and do not require the presence of a permanent light source for activation. However, the antimicrobial effect in the dark is more significant and is considered to be the result of the electric field effect generated on the composite layer.


Assuntos
Luz , Titânio , Antibacterianos/química , Antibacterianos/farmacologia , Catálise , Microscopia Eletrônica de Varredura , Titânio/química , Titânio/farmacologia
3.
Phys Chem Chem Phys ; 17(45): 30417-23, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26509658

RESUMO

Rutile-TiO2/hybrid halide perovskite CH3NH3PbI3-xClx interfaces are investigated by ab initio density functional theory calculations. The role of chlorine in achieving enhanced solar cell power conversion efficiencies is in the focus of recent studies, which point to increased carrier mobilities, reduced recombination rates, a driven morphology evolution of the perovskite layer and improved carrier transport across the interface. As it was recently established that chlorine is preferentially localized in the vicinity of the interface and not in the bulk of the perovskite layer, we analyze the changes introduced in the electronic properties by varying the chlorine concentration near the interface. In particular, we discuss the effects introduced in the electronic band structure and show the role of chlorine in the enhanced electron injection into the rutile-TiO2 layer. Taking into account these implications, we discuss the conditions for optimizing the solar cell efficiency in terms of interfacial chlorine concentration.

4.
Phys Chem Chem Phys ; 16(34): 18478-82, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25072353

RESUMO

The transport properties of single ferrocene molecules connected to nanoscopic gold electrodes are investigated in the framework of density functional theory (DFT) calculations using the non-equilibrium Green's function formalism. Our setup describes a molecular rotor, where one cyclopentadienyl (Cp) ring of the ferrocene molecule is fixed by the two electrodes, while the second ring is able to rotate. For small enough rotation energies the barrier between the eclipsed and staggered conformations of the ferrocene molecule ensures the functionality of a molecular oscillator. The changes in the transmission function introduced by the relative rotation angle between the two Cp rings are analyzed in both linear and non-linear bias regimes. For larger rotation energies, the device works in the spinning mode. The real time behavior of the nanomechanical device is investigated using DFT-based molecular dynamics, which shows its feasibility for applications in the terahertz regime. In the oscillating mode the natural frequencies are determined, while the spinning mode shows a remarkably reliable behavior with increasing rotation energy.

5.
Nanomaterials (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334548

RESUMO

The primary objective of this research was to develop efficient solid catalysts that can directly convert the lactic acid (LA) obtained from lignocellulosic biomass into alanine (AL) through a reductive amination process. To achieve this, various catalysts based on ruthenium were synthesized using different carriers such as multi-walled carbon nanotubes (MWCNTs), beta-zeolite, and magnetic nanoparticles (MNPs). Among these catalysts, Ru/MNP demonstrated a remarkable yield of 74.0% for alanine at a temperature of 200 °C. This yield was found to be superior not only to the Ru/CNT (55.7%) and Ru/BEA (6.6%) catalysts but also to most of the previously reported catalysts. The characterization of the catalysts and their catalytic results revealed that metallic ruthenium nanoparticles, which were highly dispersed on the external surface of the magnetic carrier, significantly enhanced the catalyst's ability for dehydrogenation. Additionally, the -NH2 basic sites on the catalyst further facilitated the formation of alanine by promoting the adsorption of acidic reactants. Furthermore, the catalyst could be easily separated using an external magnetic field and exhibited the potential for multiple reuses without any significant loss in its catalytic performance. These practical advantages further enhance its appeal for applications in the reductive amination of lactic acid to alanine.

6.
Sci Rep ; 12(1): 13806, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970901

RESUMO

Carbon quantum dots (CQDs) derived from biomass, a suggested green approach for nanomaterial synthesis, often possess poor optical properties and have low photoluminescence quantum yield (PLQY). This study employed an environmentally friendly, cost-effective, continuous hydrothermal flow synthesis (CHFS) process to synthesise efficient nitrogen-doped carbon quantum dots (N-CQDs) from biomass precursors (glucose in the presence of ammonia). The concentrations of ammonia, as nitrogen dopant precursor, were varied to optimise the optical properties of CQDs. Optimised N-CQDs showed significant enhancement in fluorescence emission properties with a PLQY of 9.6% compared to pure glucose derived-CQDs (g-CQDs) without nitrogen doping which have PLQY of less than 1%. With stability over a pH range of pH 2 to pH 11, the N-CQDs showed excellent sensitivity as a nano-sensor for the highly toxic highly-pollutant chromium (VI), where efficient photoluminescence (PL) quenching was observed. The optimised nitrogen-doping process demonstrated effective and efficient tuning of the overall electronic structure of the N-CQDs resulting in enhanced optical properties and performance as a nano-sensor.


Assuntos
Pontos Quânticos , Amônia , Carbono/química , Glucose , Nitrogênio/química , Pontos Quânticos/química
7.
Materials (Basel) ; 14(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576531

RESUMO

Preventing and controlling the spread of multidrug-resistant (MDR) bacteria implicated in healthcare-associated infections is the greatest challenge of the health systems. In recent decades, research has shown the need for passive antibacterial protection of surfaces in order to reduce the microbial load and microbial biofilm development, frequently associated with transmission of infections. The aim of the present study is to analyze the efficiency of photocatalytic antimicrobial protection methods of surfaces using the new photocatalytic paint activated by light in the visible spectrum. The new composition is characterized by a wide range of analytical methods, such as UV-VIS spectroscopy, electron microscopy (SEM), X-ray powder diffraction (PXRD) or X-ray photoelectron spectroscopy (XPS). The photocatalytic activity in the UV-A was compared with the one in the visible light spectrum using an internal method developed on the basis of DIN 52980: 2008-10 standard and ISO 10678-2010 standard. Migration of metal ions in the composition was tested based on SR EN1186-3: 2003 standard. The new photocatalytic antimicrobial method uses a type of photocatalytic paint that is active in the visible spectral range and generates reactive oxygen species with inhibitory effect against all tested microbial strains.

8.
J Phys Condens Matter ; 24(32): 326003, 1-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22785224

RESUMO

Ab initio calculations are performed in the framework of density functional theory on Mn-doped boron nitride sheets, which are candidates for two-dimensional diluted magnetic semiconductors (DMSs). Each type of substitution reveals a qualitatively different magnetic behavior encompassing ferromagnetic, anti-ferromagnetic and spin glass ordering. The ability of formation of these defects is also discussed. We analyze the dependence of the exchange couplings on the distance between impurities and the typical range and distribution are extracted. Multiple-impurity configurations are considered and the results are mapped on an Ising-type Hamiltonian with higher order exchange interactions, revealing deviations from the standard two-spin models. The percolation of interacting magnetic moments is discussed and the critical concentration is determined for the underlying transition from a ferromagnetic to a super-paramagnetic state. We conclude our study by providing the optimal conditions for doping in order to obtain a ferromagnetic DMS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA