Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351433

RESUMO

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Assuntos
Doenças Ósseas Metabólicas , Cútis Laxa , Animais , Humanos , Camundongos , Colágeno/genética , Cútis Laxa/genética , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo
2.
Osteoarthritis Cartilage ; 32(2): 177-186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989468

RESUMO

OBJECTIVE: To investigate the effects of 21 days of bed rest immobilization (with and without exercise and nutrition interventions) on type II collagen biomarker concentrations in healthy individuals. DESIGN: Twelve healthy male participants (age 34.2 ± 8.3 years; body mass index 22.4 ± 1.7 kg/m²) were exposed to 6 days ambulatory baseline data collection (BDC), 21 days head-down-tilt bed rest (HDT, CON) + interventions (HDT + resistive vibration exercise (2 times/week, 25 minutes): RVE; HDT + RVE + whey protein (0.6 g/kg body weight/day) and bicarbonate supplementation (90 mmol KHCO3/day: NeX), and 6 days of re-ambulation (R) in a cross-over designed study. The starting HDT condition was randomized (CON-RVE-NEX, RVE-NEX-CON, NEX-CON-RVE). Blood and urine samples were collected before, during, and after HDT. Serum concentrations (s) of CPII, C2C, C1,2C, and urinary concentrations (u) of CTX-II and Coll2-1NO2 were measured. RESULTS: Twenty-one days of HDT resulted in increased sCPII (p < 0.001), sC2C (p < 0.001), and sC1,2C (p = 0.001) (highest increases: sCPII (+24.2% - HDT5), sC2C (+24.4% - HDT7), sC1,2C (+13.5% - HDT2). sC2C remained elevated at R+1 (p = 0.002) and R+6 (p < 0.001) compared to baseline. NeX led to lower sCPII (p < 0.001) and sC1,2C (p = 0.003) compared to CON. uCTX-II (second void and 24-hour urine) increased during HDT (p < 0.001, highest increase on HDT21: second void +82.8% (p < 0.001); 24-hour urine + 77.8% (p < 0.001). NeX resulted in lower uCTX-II concentrations in 24-hour urine (p = 0.012) compared to CON. CONCLUSIONS: Twenty-one days of bed rest immobilization results in type II collagen degradation that does not recover within 6 days of resuming ambulation. The combination of resistive vibration exercise and protein/bicarbonate supplementation minimally counteracted this effect.


Assuntos
Repouso em Cama , Bicarbonatos , Humanos , Masculino , Adulto , Colágeno Tipo II , Repouso em Cama/métodos , Terapia por Exercício/métodos , Decúbito Inclinado com Rebaixamento da Cabeça
3.
Immunity ; 43(4): 803-16, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26474656

RESUMO

Activation of the immune response during injury is a critical early event that determines whether the outcome of tissue restoration is regeneration or replacement of the damaged tissue with a scar. The mechanisms by which immune signals control these fundamentally different regenerative pathways are largely unknown. We have demonstrated that, during skin repair in mice, interleukin-4 receptor α (IL-4Rα)-dependent macrophage activation controlled collagen fibril assembly and that this process was important for effective repair while having adverse pro-fibrotic effects. We identified Relm-α as one important player in the pathway from IL-4Rα signaling in macrophages to the induction of lysyl hydroxylase 2 (LH2), an enzyme that directs persistent pro-fibrotic collagen cross-links, in fibroblasts. Notably, Relm-ß induced LH2 in human fibroblasts, and expression of both factors was increased in lipodermatosclerosis, a condition of excessive human skin fibrosis. Collectively, our findings provide mechanistic insights into the link between type 2 immunity and initiation of pro-fibrotic pathways.


Assuntos
Cicatriz/etiologia , Colágeno/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Macrófagos/metabolismo , Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Cicatrização/fisiologia , Animais , Cicatriz/metabolismo , Cicatriz/patologia , Técnicas de Cocultura , Dermatite/metabolismo , Dermatite/patologia , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Interleucinas/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microfibrilas/metabolismo , Microfibrilas/ultraestrutura , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/biossíntese , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Receptores de Superfície Celular/deficiência , Esclerodermia Localizada/metabolismo , Esclerodermia Localizada/patologia , Pele/lesões , Pele/metabolismo , Pele/patologia
4.
Ann Rheum Dis ; 82(11): 1474-1486, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37479494

RESUMO

OBJECTIVES: Activation of fibroblasts is a hallmark of fibrotic processes. Besides cytokines and growth factors, fibroblasts are regulated by the extracellular matrix environment through receptors such as integrins, which transduce biochemical and mechanical signals enabling cells to mount appropriate responses according to biological demands. The aim of this work was to investigate the in vivo role of collagen-fibroblast interactions for regulating fibroblast functions and fibrosis. METHODS: Triple knockout (tKO) mice with a combined ablation of integrins α1ß1, α2ß1 and α11ß1 were created to address the significance of integrin-mediated cell-collagen communication. Properties of primary dermal fibroblasts lacking collagen-binding integrins were delineated in vitro. Response of the tKO mice skin to bleomycin induced fibrotic challenge was assessed. RESULTS: Triple integrin-deficient mice develop normally, are transiently smaller and reveal mild alterations in mechanoresilience of the skin. Fibroblasts from these mice in culture show defects in cytoskeletal architecture, traction stress generation, matrix production and organisation. Ablation of the three integrins leads to increased levels of discoidin domain receptor 2, an alternative receptor recognising collagens in vivo and in vitro. However, this overexpression fails to compensate adhesion and spreading defects on collagen substrates in vitro. Mice lacking collagen-binding integrins show a severely attenuated fibrotic response with impaired mechanotransduction, reduced collagen production and matrix organisation. CONCLUSIONS: The data provide evidence for a crucial role of collagen-binding integrins in fibroblast force generation and differentiation in vitro and for matrix deposition and tissue remodelling in vivo. Targeting fibroblast-collagen interactions might represent a promising therapeutic approach to regulate connective tissue deposition in fibrotic diseases.

5.
Cell Mol Life Sci ; 78(13): 5275-5301, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34023917

RESUMO

For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmission, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/fisiologia , Atrofia Muscular Espinal/fisiopatologia , Osteoclastos/fisiologia , Osteoporose/fisiopatologia , Animais , Humanos , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Osteoclastos/citologia
6.
Int J Legal Med ; 135(5): 2117-2134, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33987743

RESUMO

This work deals with the examination of tool marks in human cartilage. We compared the effectiveness of several cleaning methods on cut marks in porcine cartilage. The method cleaning by multiple casts achieved the significantly highest scores (P = 0.02). Furthermore, we examined the grain-like elevations (dots) located on casts of cut cartilage. The results of this study suggest that the casting material forms these dots when penetrating cartilage cavities, which are areas where the strong collagen fibres leave space for the chondrocytes. We performed fixation experiments to avoid this, without success. In addition, 31 casting materials were compared regarding contrast under light-microscope and 3D tool marks scanner. Under the light-microscope, brown materials achieved significantly higher values than grey (P = 0.02) or black (P = 0.00) whereas under the 3D scanner, black materials reached higher contrast values than grey (P = 0.04) or brown (P = 0.047). To compare the accuracy and reproducibility of 6 test materials for cartilage, we used 10 knives to create cut marks that were subsequently scanned. During the alignment of the individual signals of each mark, the cross-correlation coefficients (Xmax) and lags (LXmax) were calculated. The signals of the marks in agarose were aligned with significantly fewer lags and achieved significantly higher cross-correlation coefficients compared to all tested materials (both P = 0.00). Moreover, we determined the cross-correlation coefficients (XC) for known-matches (KM) per material. Agarose achieved significantly higher values than AccuTrans®, Clear Ballistics™, and gelatine (all P = 0.00). The results of this work provide valuable insights for the forensic investigation of marks in human costal cartilage.


Assuntos
Cartilagem Costal/lesões , Teste de Materiais/métodos , Manejo de Espécimes/métodos , Ferimentos Perfurantes/patologia , Animais , Humanos , Imageamento Tridimensional/instrumentação , Microscopia , Modelos Animais , Suínos
7.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802838

RESUMO

Osteoarthritis (OA) is a multifactorial disease which is characterized by a change in the homeostasis of the extracellular matrix (ECM). The ECM is essential for the function of the articular cartilage and plays an important role in cartilage mechanotransduction. To provide a better understanding of the interaction between the ECM and the actin cytoskeleton, we investigated the localization and expression of the Ca2+-dependent proteins cartilage oligomeric matrix protein (COMP), thrombospondin-1 (TSP-1), plastin 3 (PLS3) and stromal interaction molecule 1 (STIM1). We investigated 16 patients who suffered from varus knee OA and performed a topographical analysis of the cartilage from the medial and lateral compartment of the proximal tibial plateau. In a varus knee, OA is more pronounced in the medial compared to the lateral compartment as a result of an overloading due to the malalignment. We detected a location-dependent staining of PLS3 and STIM1 in the articular cartilage tissue. The staining intensity for both proteins correlated with the degree of cartilage degeneration. The staining intensity of TSP-1 was clearly reduced in the cartilage of the more affected medial compartment, an observation that was confirmed in cartilage extracts by immunoblotting. The total amount of COMP was unchanged; however, slight changes were detected in the localization of the protein. Our results provide novel information on alterations in OA cartilage suggesting that Ca2+-dependent mechanotransduction between the ECM and the actin cytoskeleton might play an essential role in the pathomechanism of OA.


Assuntos
Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Osteoartrite do Joelho/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Trombospondinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Condrócitos/metabolismo , Feminino , Humanos , Articulação do Joelho/patologia , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Transporte Proteico
8.
Hum Mol Genet ; 27(24): 4249-4262, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30204862

RESUMO

Over 200 million people suffer from osteoporosis worldwide, one third of which will develop osteoporotic bone fractures. Unfortunately, no effective cure exists. Mutations in plastin 3 (PLS3), an F-actin binding and bundling protein, cause X-linked primary osteoporosis in men and predisposition to osteoporosis in postmenopausal women. Moreover, the strongest association so far for osteoporosis in elderly women after menopause was connected to a rare SNP in PLS3, indicating a possible role of PLS3 in complex osteoporosis as well. Interestingly, 5% of the general population are overexpressing PLS3, with yet unknown consequences. Here, we studied ubiquitous Pls3 knockout and PLS3 overexpression in mice and demonstrate that both conditions influence bone remodeling and structure: while Pls3 knockout mice exhibit osteoporosis, PLS3 overexpressing mice show thickening of cortical bone and increased bone strength. We show that unbalanced PLS3 levels affect osteoclast development and function, by misregulating the NFκB pathway. We found upregulation of RELA (NFκB subunit p65) in PLS3 overexpressing mice-known to stimulate osteoclastogenesis-but strikingly reduced osteoclast resorption. We identify NFκB repressing factor (NKRF) as a novel PLS3 interactor, which increasingly translocates to the nucleus when PLS3 is overexpressed. We show that NKRF binds to the NFκB downstream target and master regulator of osteoclastogenesis nuclear factor of activated T cells 1 (Nfatc1), thereby reducing its transcription and suppressing osteoclast function. We found the opposite in Pls3 knockout osteoclasts, where decreased nuclear NKRF augmented Nfatc1 transcription, causing osteoporosis. Regulation of osteoclastogenesis and bone remodeling via the PLS3-NKRF-NFκB-NFATC1 axis unveils a novel possibility to counteract osteoporosis.


Assuntos
Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Fatores de Transcrição NFATC/genética , Osteogênese/genética , Osteoporose/genética , Animais , Densidade Óssea/genética , Remodelação Óssea/genética , Modelos Animais de Doenças , Fraturas Ósseas/genética , Fraturas Ósseas/patologia , Humanos , Camundongos , Mutação , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/fisiopatologia , Proteínas Repressoras/genética , Fator de Transcrição RelA/genética
9.
Development ; 144(19): 3562-3577, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851708

RESUMO

Cartilage originates from mesenchymal cell condensations that differentiate into chondrocytes of transient growth plate cartilage or permanent cartilage of the articular joint surface and trachea. MicroRNAs fine-tune the activation of entire signaling networks and thereby modulate complex cellular responses, but so far only limited data are available on miRNAs that regulate cartilage development. Here, we characterize a miRNA that promotes the biosynthesis of a key component in the RAF/MEK/ERK pathway in cartilage. Specifically, by transcriptome profiling we identified miR-322 to be upregulated during chondrocyte differentiation. Among the various miR-322 target genes in the RAF/MEK/ERK pathway, only Mek1 was identified as a regulated target in chondrocytes. Surprisingly, an increased concentration of miR-322 stabilizes Mek1 mRNA to raise protein levels and dampen ERK1/2 phosphorylation, while cartilage-specific inactivation of miR322 in mice linked the loss of miR-322 to decreased MEK1 levels and to increased RAF/MEK/ERK pathway activation. Such mice died perinatally due to tracheal growth restriction and respiratory failure. Hence, a single miRNA can stimulate the production of an inhibitory component of a central signaling pathway to impair cartilage development.


Assuntos
Cartilagem/embriologia , Cartilagem/enzimologia , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Animais , Animais Recém-Nascidos , Sítios de Ligação/genética , Sistemas CRISPR-Cas/genética , Condrócitos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Lâmina de Crescimento/metabolismo , Hemizigoto , Homeostase , MAP Quinase Quinase 1/genética , Masculino , Camundongos Transgênicos , MicroRNAs/genética , Organogênese/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção
10.
Am J Pathol ; 189(9): 1831-1845, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199918

RESUMO

SMPD3 deficiency in the neutral sphingomyelinase (Smpd3-/-) mouse results in a novel form of juvenile dwarfism, suggesting smpd3 is a polygenetic determinant of body height. SMPD3 controls homeostasis of the sphingomyelin cycle in the Golgi compartment, essential for membrane remodeling, initiating multiform vesicle formation and transport in the Golgi secretory pathway. Using the unbiased Smpd3-/- genetic model, this study shows that the perturbed Golgi secretory pathway of chondrocytes of the epiphyseal growth zone leads to dysproteostasis, skeletal growth inhibition, malformation, and chondrodysplasia, but showed unimpaired mineralization in primary and secondary enchondral ossification centers. This has been elaborated by biochemical analyses and immunohistochemistry of long bones of Smpd3-/- mice. A more precise definition of the microarchitecture and three-dimensional structure of the bone was shown by peripheral quantitative computed tomography, high-resolution microcomputed tomography, and less precisely by dual-energy X-ray absorptiometry for osteodensitometry. Ablation of the Smpd3 locus as part of a 980-kb deletion on chromosome 8 in the fro/fro mutant, generated by chemical mutagenesis, is held responsible for skeletal hypomineralization, osteoporosis, and multiple fractures of long bones, which are hallmarks of human osteogenesis imperfecta. The phenotype of the genetically unbiased Smpd3-/- mouse, described here, precludes the proposed role of Smpd3 as a candidate gene of human osteogenesis imperfecta, but suggests SMPD3 deficiency as the pathogenetic basis of a novel form of chondrodysplasia.


Assuntos
Desenvolvimento Ósseo , Calcificação Fisiológica , Condrócitos/patologia , Osteocondrodisplasias/etiologia , Esfingomielina Fosfodiesterase/fisiologia , Animais , Condrócitos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocondrodisplasias/patologia
11.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963938

RESUMO

Matrilins (MATN1, MATN2, MATN3 and MATN4) are adaptor proteins of the cartilage extracellular matrix (ECM), which bridge the collagen II and proteoglycan networks. In humans, dominant-negative mutations in MATN3 lead to various forms of mild chondrodysplasias. However, single or double matrilin knockout mice generated previously in our laboratory do not show an overt skeletal phenotype, suggesting compensation among the matrilin family members. The aim of our study was to establish a mouse line, which lacks all four matrilins and analyze the consequence of matrilin deficiency on endochondral bone formation and cartilage function. Matn1-4-/- mice were viable and fertile, and showed a lumbosacral transition phenotype characterized by the sacralization of the sixth lumbar vertebra. The development of the appendicular skeleton, the structure of the growth plate, chondrocyte differentiation, proliferation, and survival were normal in mutant mice. Biochemical analysis of knee cartilage demonstrated moderate alterations in the extractability of the binding partners of matrilins in Matn1-4-/- mice. Atomic force microscopy (AFM) revealed comparable compressive stiffness but higher collagen fiber diameters in the growth plate cartilage of quadruple mutant compared to wild-type mice. Importantly, Matn1-4-/- mice developed more severe spontaneous osteoarthritis at the age of 18 months, which was accompanied by changes in the biomechanical properties of the articular cartilage. Interestingly, Matn4-/- mice also developed age-associated osteoarthritis suggesting a crucial role of MATN4 in maintaining the stability of the articular cartilage. Collectively, our data provide evidence that matrilins are important to protect articular cartilage from deterioration and are involved in the specification of the vertebral column.


Assuntos
Envelhecimento/genética , Proteínas Matrilinas/genética , Músculo Esquelético/patologia , Osteoartrite/patologia , Animais , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Microscopia de Força Atômica , Osteoartrite/genética
12.
Stem Cells ; 36(11): 1752-1763, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30063808

RESUMO

The trabecular extracellular matrix (ECM) forms a three-dimensional scaffold to stabilize the bone marrow, provide substrates for cell-matrix interactions and retain, present or release signals to modulate hematopoietic stem and progenitor cell development. However, the impact of trabecular ECM components on hematopoiesis has been poorly studied. Using collagen IX alpha1 - deficient (Col9a1(-/-) ) mice, we revealed that a lack of collagen IX alpha1 results in a disorganized trabecular network enriched in fibronectin, and in a reduction in myeloid cells, which was accompanied by a decrease in colony-stimulating factor 1 receptor expression on monocytes from the bone marrow. In contrast, B-cell numbers in the bone marrow and T-cell numbers in the thymus remained unchanged. Alterations in the bone marrow microenvironment may not only reduce myeloid cell numbers, but also have long-term implications for myeloid cell function. Mice were infected with Listeria moncytogenes to analyze the function of myeloid cells. In this case, an inadequate macrophage-dependent clearance of bacterial infections was observed in Col9a1(-/-) mice in vivo. This was mainly caused by an impaired interferon-gamma/tumor necrosis factor-alpha-mediated activation of macrophages. The loss of collagen IX alpha1 therefore destabilizes the trabecular bone network, impairs myeloid cell differentiation, and affects the innate immune response against Listeria. Stem Cells 2018;36:1752-1763.


Assuntos
Colágeno/metabolismo , Células Mieloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Camundongos
13.
J Cell Sci ; 129(4): 706-16, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26746240

RESUMO

Cartilage oligomeric matrix protein (COMP) is an abundant component in the extracellular matrix (ECM) of load-bearing tissues such as tendons and cartilage. It provides adaptor functions by bridging different ECM structures. We have previously shown that COMP is also a constitutive component of healthy human skin and is strongly induced in fibrosis. It binds directly and with high affinity to collagen I and to collagen XII that decorates the surface of collagen I fibrils. We demonstrate here that lack of COMP-collagen interaction in the extracellular space leads to changes in collagen fibril morphology and density, resulting in altered skin biomechanical properties. Surprisingly, COMP also fulfills an important intracellular function in assisting efficient secretion of collagens, which were retained in the endoplasmic reticulum of COMP-null fibroblasts. Accordingly, COMP-null mice showed severely attenuated fibrotic responses in skin. Collagen secretion was fully restored by introducing wild-type COMP. Hence, our work unravels a new, non-structural and intracellular function of the ECM protein COMP in controlling collagen secretion.


Assuntos
Proteína de Matriz Oligomérica de Cartilagem/genética , Colágenos Fibrilares/metabolismo , Pele/metabolismo , Animais , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Células Cultivadas , Estresse do Retículo Endoplasmático , Feminino , Fibroblastos/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Pele/patologia
14.
Int Orthop ; 40(2): 315-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26395009

RESUMO

PURPOSE: We hypothesized that the re-fixation of the deep and superficial fibres of the distal radioulnar ligaments provide improved stability compared to reconstruction of the deep fibres alone. METHODS: Fourteen fresh-frozen cadaver upper extremities were used for biomechanical testing. Transosseous re-fixation of the deep fibres of the distal radioulnar ligaments alone (single mattress suture group; n = 7) was compared to the transosseous re-attachment of the deep and superficial fibres (double mattress suture group; n = 7). Cyclic load application provoked palmar translation of the radius with respect to the rigidly affixed ulna. Creep, stiffness, and hysteresis were obtained from the load-deformation curves, respectively. Testing was done in neutral forearm rotation, 60° pronation, and 60° supination. RESULTS: The re-fixation techniques did not differ significantly regarding the viscoelastic parameters creep, hysteresis, and stiffness. Several significant differences of one cycle to the consecutive one within each re-fixation group could be detected especially for creep and hysteresis. No significant differences between the different forearm positions could be detected for each viscoelastic parameter. CONCLUSIONS: The re-fixation techniques did not differ significantly regarding creep, hysteresis, and stiffness. This means that the additional re-attachment of the superficial fibres may not provide greater stability to the DRUJ. Bearing in mind that the study was a cadaver examination with a limited number of specimens we may suppose that the re-attachment of the superficial fibres seem to be unnecessary. A gradual decline of creep and hysteresis from first to last loading-unloading cycle is to be expected and typical of ligaments which are viscoelastic.


Assuntos
Ligamentos/cirurgia , Procedimentos Ortopédicos/métodos , Articulação do Punho/cirurgia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Ortopédicos/efeitos adversos , Técnicas de Sutura , Articulação do Punho/fisiopatologia
15.
J Biomech Eng ; 137(6): 061009, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25782164

RESUMO

Mechanical loading influences the structural and mechanical properties of articular cartilage. The cartilage matrix protein collagen II essentially determines the tensile properties of the tissue and is adapted in response to loading. The collagen II network is stabilized by the collagen II-binding cartilage oligomeric matrix protein (COMP), collagen IX, and matrilin-3. However, the effect of mechanical loading on these extracellular matrix proteins is not yet understood. Therefore, the aim of this study was to investigate if and how chondrocytes assemble the extracellular matrix proteins collagen II, COMP, collagen IX, and matrilin-3 in response to mechanical loading. Primary murine chondrocytes were applied to cyclic tensile strain (6%, 0.5 Hz, 30 min per day at three consecutive days). The localization of collagen II, COMP, collagen IX, and matrilin-3 in loaded and unloaded cells was determined by immunofluorescence staining. The messenger ribo nucleic acid (mRNA) expression levels and synthesis of the proteins were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and western blots. Immunofluorescence staining demonstrated that the pattern of collagen II distribution was altered by loading. In loaded chondrocytes, collagen II containing fibrils appeared thicker and strongly co-stained for COMP and collagen IX, whereas the collagen network from unloaded cells was more diffuse and showed minor costaining. Further, the applied load led to a higher amount of COMP in the matrix, determined by western blot analysis. Our results show that moderate cyclic tensile strain altered the assembly of the extracellular collagen network. However, changes in protein amount were only observed for COMP, but not for collagen II, collagen IX, or matrilin-3. The data suggest that the adaptation to mechanical loading is not always the result of changes in RNA and/or protein expression but might also be the result of changes in matrix assembly and structure.


Assuntos
Cartilagem Articular/fisiologia , Condrócitos/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Matriz Extracelular/fisiologia , Mecanotransdução Celular/fisiologia , Frações Subcelulares/fisiologia , Animais , Animais Recém-Nascidos , Cartilagem Articular/citologia , Células Cultivadas , Condrócitos/citologia , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Mecânico , Resistência à Tração/fisiologia
16.
Calcif Tissue Int ; 94(4): 373-83, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24292598

RESUMO

Botulinum toxin A (BTX)-induced muscle paralysis results in pronounced bone degradation with substantial bone loss. We hypothesized that whole-body vibration (WBV) and insulin-like growth factor-I (IGF-I) treatment can counteract paralysis-induced bone degradation following BTX injections by activation of the protein kinase B (Akt) signaling pathway. Female C57BL/6 mice (n = 60, 16 weeks) were assigned into six groups (n = 10 each): SHAM, BTX, BTX+WBV, BTX+IGF-I, BTX+WBV+IGF-I, and a baseline group, which was killed at the beginning of the study. Mice received a BTX (1.0 U/0.1 mL) or saline (SHAM) injection in the right hind limb. The BTX+IGF-I and BTX+WBV+IGF-I groups obtained daily subcutaneous injections of human IGF-I (1 µg/day). The BTX+WBV and BTX+WBV+IGF-I groups underwent WBV (25 Hz, 2.1 g, 0.83 mm) for 30 min/day, 5 days/week for 4 weeks. Femora were scanned by pQCT, and mechanical properties were determined. On tibial sections TRAP staining, static histomorphometry, and immunohistochemical staining against Akt, phospho-Akt, IGF-IR (IGF-I receptor), and phospho-IGF-IR were conducted. BTX injection decreased trabecular and cortical bone mineral density. The WBV and WBV+IGF-I groups showed no difference in trabecular bone mineral density compared to the SHAM group. The phospho-IGF-IR and phospho-Akt stainings were not differentially altered in the injected hind limbs between groups. We found that high-frequency, low-magnitude WBV can counteract paralysis-induced bone loss following BTX injections, while we could not detect any effect of treatment with IGF-I.


Assuntos
Toxinas Botulínicas/efeitos adversos , Fator de Crescimento Insulin-Like I/farmacologia , Atrofia Muscular/fisiopatologia , Vibração , Animais , Índice de Massa Corporal , Densidade Óssea , Osso e Ossos/fisiopatologia , Feminino , Marcha , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/induzido quimicamente , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Estresse Mecânico , Tomografia Computadorizada por Raios X
17.
Arthritis Rheum ; 65(9): 2290-300, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23740547

RESUMO

OBJECTIVE: To generate doxycycline-inducible human tumor necrosis factor α (TNFα)-transgenic mice to overcome a major disadvantage of existing transgenic mice with constitutive expression of TNFα, which is the limitation in crossing them with various knockout or transgenic mice. METHODS: A transgenic mouse line that expresses the human TNFα cytokine exclusively after doxycycline administration was generated and analyzed for the onset of diseases. RESULTS: Doxycycline-inducible human TNFα-transgenic mice developed an inflammatory arthritis- and psoriasis-like phenotype, with fore and hind paws being prominently affected. The formation of "sausage digits" with characteristic involvement of the distal interphalangeal joints and nail malformation was observed. Synovial hyperplasia, enthesitis, cartilage and bone alterations, formation of pannus tissue, and inflammation of the skin epidermis and nail matrix appeared as early as 1 week after the treatment of mice with doxycycline and became aggravated over time. The abrogation of human TNFα expression by the removal of doxycycline 6 weeks after beginning stimulation resulted in fast resolution of the most advanced macroscopic and histologic disorders, and 3-6 weeks later, only minimal signs of disease were visible. CONCLUSION: Upon doxycycline administration, the doxycycline-inducible human TNFα-transgenic mouse displays the major features of inflammatory arthritis. It represents a unique animal model for studying the molecular mechanisms of arthritis, especially the early phases of disease genesis and tissue remodeling steps upon abrogation of TNFα expression. Furthermore, unlimited crossing of doxycycline-inducible human TNFα-transgenic mice with various knockout or transgenic mice opens new possibilities for unraveling the role of various signaling molecules acting in concert with TNFα.


Assuntos
Artrite Experimental/genética , Artrite Psoriásica/genética , Fator de Necrose Tumoral alfa/genética , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Psoriásica/metabolismo , Artrite Psoriásica/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Inflamação/patologia , Articulações/metabolismo , Articulações/patologia , Camundongos , Camundongos Transgênicos , Fator de Necrose Tumoral alfa/metabolismo
18.
Orthopadie (Heidelb) ; 53(7): 503-510, 2024 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-38829400

RESUMO

The various connective tissues of the body have different functions, which result from their specific structure and composition. The identification of this structure-function relationship is of great importance for various disciplines such as medicine, biology or tissue engineering. Connective tissue consists mainly of an extracellular matrix (ECM) and a limited number of cells. It is extremely adaptable because the activity of the cells remodels the composition and structure of the ECM in order to adapt the mechanical properties (functions) to the new demands (e.g. an increased mechanical stimulus).


Assuntos
Tecido Conjuntivo , Matriz Extracelular , Tecido Conjuntivo/fisiologia , Humanos , Matriz Extracelular/fisiologia , Matriz Extracelular/química , Fenômenos Biomecânicos/fisiologia , Modelos Biológicos , Animais , Engenharia Tecidual/métodos
19.
JBMR Plus ; 8(1): ziad009, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38549711

RESUMO

PLS3 loss-of-function mutations in humans and mice cause X-linked primary osteoporosis. However, it remains largely unknown how PLS3 mutations cause osteoporosis and which function PLS3 plays in bone homeostasis. A recent study showed that ubiquitous Pls3 KO in mice results in osteoporosis. Mainly osteoclasts were impacted in their function However, it has not been proven if osteoclasts are the major cell type affected and responsible for osteoporosis development in ubiquitous Pls3 KO mice. Here, we generated osteoclast-specific Pls3 KO mice. Additionally, we developed a novel polyclonal PLS3 antibody that showed specific PLS3 loss in immunofluorescence staining of osteoclasts in contrast to previously available antibodies against PLS3, which failed to show PLS3 specificity in mouse cells. Moreover, we demonstrate that osteoclast-specific Pls3 KO causes dramatic increase in resorptive activity of osteoclasts in vitro. Despite these findings, osteoclast-specific Pls3 KO in vivo failed to cause any osteoporotic phenotype in mice as proven by micro-CT and three-point bending test. This demonstrates that the pathomechanism of PLS3-associated osteoporosis is highly complex and cannot be reproduced in a system singularly focused on one cell type. Thus, the loss of PLS3 in alternative bone cell types might contributes to the osteoporosis phenotype in ubiquitous Pls3 KO mice.

20.
J Biol Chem ; 287(9): 6431-40, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22210772

RESUMO

Mice with a combined deficiency in the α2ß1 and α11ß1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2ß1 or α11ß1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis.


Assuntos
Nanismo/genética , Nanismo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Integrina alfa2beta1/genética , Integrinas/genética , Receptores de Colágeno/genética , Animais , Densidade Óssea/genética , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Colágeno/metabolismo , Matriz Extracelular/fisiologia , Feminino , Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Homeostase/fisiologia , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Osteoblastos/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA