Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurovirol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713307

RESUMO

Despite antiretroviral therapy (ART), HIV persistence in the central nervous system (CNS) continues to cause a range of cognitive impairments in people living with HIV (PLWH). Upon disease progression, transmigrating CCR5-using T-cell tropic viruses are hypothesized to evolve into macrophage-tropic viruses in the CNS that can efficiently infect low CD4-expressing cells, such as microglia. We examined HIV-1 RNA concentration, co-receptor usage, and CSF compartmentalization in paired CSF and blood samples from 19 adults not on treatment. Full-length envelope CSF- and plasma-derived reporter viruses were generated from 3 subjects and phenotypically characterized in human primary CD4+ T-cells and primary microglia. Median HIV RNA levels were higher in plasma than in CSF (5.01 vs. 4.12 log10 cp/mL; p = 0.004), and coreceptor usage was mostly concordant for CCR5 across the paired samples (n = 17). Genetically compartmentalized CSF viral populations were detected in 2 subjects, one with and one without neurological symptoms. All viral clones could replicate in T-cells (R5 T cell-tropic). In addition, 3 CSF and 1 plasma patient-derived viral clones also had the capacity to replicate in microglia/macrophages and, therefore have an intermediate macrophage tropic phenotype. Overall, with this study, we demonstrate that in a subset of PLWH, plasma-derived viruses undergo genetic and phenotypic evolution within the CNS, indicating viral infection and replication in CNS cells. It remains to be studied whether the intermediate macrophage-tropic phenotype observed in primary microglia represents a midpoint in the evolution towards a macrophage-tropic phenotype that can efficiently replicate in microglial cells and propagate viral infection in the CNS.

2.
PLoS One ; 19(6): e0305641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38885222

RESUMO

HIV can be successfully suppressed to undetectable levels by antiretroviral therapy (ART) in most people with HIV (PWH). However, a small proportion continues to have persistent low-level viremia (LLV) during ART. A presumed source of LLV is production or replication from viral reservoirs, which are maintained in the presence of ART. It is unknown whether the oral cavity can be considered an HIV reservoir. As periodontal inflammation is a common problem in PWH, we hypothesize that periodontal inflammation in the oral cavity activates (latently) infected cells and thus might be associated with LLV. We included 11 individuals with HIV LLV, and compared HIV-RNA levels in saliva and plasma at baseline and at week 24 after switch of ART. We compared the LLV-group at baseline with 11 age-matched controls with suppressed viremia. To investigate the severity of periodontitis we used Periodontal Inflamed Surface Areas (PISA) by measuring probing depth, gingival recession, bleeding on probing and clinical attachment level. Severity of periodontitis was classified according to the CDC-AAP case definition. Additional insights in periodontal inflammation were obtained by comparing immune activation markers and the presence of periodontal pathogens. In four individuals of the LLV group, residual levels of HIV-RNA were detected in saliva at baseline (N = 1) or at week 24 (N = 2) or both (N = 1). Of the four individuals with LLV, three had residual levels of HIV-RNA in saliva. All 22 individuals had moderate to severe periodontitis. PISA was not significantly different between cases with LLV and controls. Similarly, periodontal pathogens were frequently observed in both groups. Total activated HLA-DR+CD38+ CD4+ cells and CD8+ cells were significantly higher in the LLV group than in the control group (p = <0.01). No immune markers were associated with LLV. In conclusion, periodontal inflammation is an unlikely driver of HIV LLV compared to HIV suppressed individuals.


Assuntos
Infecções por HIV , Periodontite , Saliva , Viremia , Humanos , Viremia/virologia , Viremia/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Masculino , Periodontite/virologia , Periodontite/imunologia , Feminino , Adulto , Saliva/virologia , Pessoa de Meia-Idade , RNA Viral/sangue , HIV-1 , Carga Viral , Inflamação/virologia , Estudos de Casos e Controles
3.
Viruses ; 16(2)2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399959

RESUMO

There is an ongoing debate regarding whether low-level viremia (LLV), in particular persistent LLV, during HIV treatment with optimal adherence originates from low-level viral replication, viral production, or both. We performed an observational study in 30 individuals with LLV who switched to a boosted darunavir (DRV)-based therapy. In-depth virological analyses were used to characterize the viral population and the (activity) of the viral reservoir. Immune activation was examined using cell-bound and soluble markers. The primary outcome was defined as the effect on HIV-RNA and was categorized by responders (<50 cp/mL) or non-responders (>50 cp/mL). At week 24, 53% of the individuals were considered responders, 40% non-responders, and 7% could not be assigned. Sequencing showed no evolution or selection of drug resistance in the non-responders. Production of defective virus with mutations in either the protease (D25N) or RT active site contributed to persistent LLV in two individuals. We show that in about half of the study participants, the switch to a DRV-based regimen resulted in a viral response indicative of ongoing low-level viral replication as the cause of LLV before the switch. Our data confirm that in clinical management, high genetic barrier drugs like DRV are a safe choice, irrespective of the source of LLV.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Darunavir/uso terapêutico , Darunavir/farmacologia , Viremia , Infecções por HIV/tratamento farmacológico , Terapia Antirretroviral de Alta Atividade , Análise de Sequência , Carga Viral , Fármacos Anti-HIV/farmacologia
4.
Lancet HIV ; 11(6): e389-e405, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816141

RESUMO

BACKGROUND: Allogeneic haematopoietic stem-cell transplantation (allo-HSCT) markedly reduces HIV reservoirs, but the mechanisms by which this occurs are only partly understood. In this study, we aimed to describe the dynamics of virological and immunological markers of HIV persistence after allo-HSCT. METHODS: In this prospective observational cohort study, we analysed the viral reservoir and serological dynamics in IciStem cohort participants with HIV who had undergone allo-HSCT and were receiving antiretroviral therapy, ten of whom had received cells from donors with the CCR5Δ32 mutation. Participants from Belgium, Canada, Germany, Italy, the Netherlands, Spain, Switzerland, and the UK were included in the cohort both prospectively and retrospectively between June 1, 2014 and April 30, 2019. In the first 6 months after allo-HSCT, participants had monthly assessments, with annual assessments thereafter, with the protocol tailored to accommodate for the individual health status of each participant. HIV reservoirs were measured in blood and tissues and HIV-specific antibodies were measured in plasma. We used the Wilcoxon signed-rank test to compare data collected before and after allo-HSCT in participants for whom longitudinal data were available. When the paired test was not possible, we used the Mann-Whitney U test. We developed a mathematical model to study the factors influencing HIV reservoir reduction in people with HIV after allo-HSCT. FINDINGS: We included 30 people with HIV with haematological malignancies who received a transplant between Sept 1, 2009 and April 30, 2019 and were enrolled within the IciStem cohort and included in this analysis. HIV reservoirs in peripheral blood were reduced immediately after full donor chimerism was achieved, generally accompanied by undetectable HIV-DNA in bone marrow, ileum, lymph nodes, and cerebrospinal fluid, regardless of donor CCR5 genotype. HIV-specific antibody levels and functionality values declined more slowly than direct HIV reservoir values, decaying significantly only months after full donor chimerism. Mathematical modelling suggests that allogeneic immunity mediated by donor cells is the main viral reservoir depletion mechanism after massive reservoir reduction during conditioning chemotherapy before allo-HSCT (half-life of latently infected replication-competent cells decreased from 44 months to 1·5 months). INTERPRETATION: Our work provides, for the first time, data on the effects of allo-HSCT in the context of HIV infection. Additionally, we raise the question of which marker can serve as the last reporter of the residual viraemia, postulating that the absence of T-cell immune responses might be a more reliable marker than antibody decline after allo-HSCT. FUNDING: amfAR (American Foundation for AIDS Research; ARCHE Program), National Institutes of Health, National Institute of Allergy and Infectious Diseases, and Dutch Aidsfonds.


Assuntos
Infecções por HIV , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Infecções por HIV/imunologia , Infecções por HIV/virologia , Masculino , Estudos Prospectivos , Feminino , Adulto , Pessoa de Meia-Idade , HIV-1/imunologia , Transplante Homólogo , Biomarcadores/sangue , Carga Viral , Anticorpos Anti-HIV/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA