Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 18(1): 176, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32316978

RESUMO

BACKGROUND: In a randomized phase II trial conducted in patients with metastatic melanoma, patient-specific autologous dendritic cell vaccines (DCV) were associated with longer survival than autologous tumor cell vaccines (TCV). Both vaccines presented antigens from cell-renewing autologous tumor cells. The current analysis was performed to better understand the immune responses induced by these vaccines, and their association with survival. METHODS: 110 proteomic markers were measured at a week-0 baseline, 1 week before the first of 3 weekly vaccine injections, and at week-4, 1 week after the third injection. Data was presented as a deviation from normal controls. A two-component principal component (PC) statistical analysis and discriminant analysis were performed on this data set for all patients and for each treatment cohort. RESULTS: At baseline PC-1 contained 64.4% of the variance and included the majority of cytokines associated with Th1 and Th2 responses, which positively correlated with beta-2-microglobulin (B2M), programmed death protein-1 (PD-1) and transforming growth factor beta (TGFß1). Results were similar at baseline for both treatment cohorts. After three injections, DCV-treated patients showed correlative grouping among Th1/Th17 cytokines on PC-1, with an inverse correlation with B2M, FAS, and IL-18, and correlations among immunoglobulins in PC-2. TCV-treated patients showed a positive correlation on PC-1 among most of the cytokines and tumor markers B2M and FAS receptor. There were also correlative changes of IL12p40 with both Th1 and Th2 cytokines and TGFß1. Discriminant analysis provided additional evidence that DCV was associated with innate, Th1/Th17, and Th2 responses while TCV was only associated with innate and Th2 responses. CONCLUSIONS: These analyses confirm that DCV induced a different immune response than that induced by TCV, and these immune responses were associated with improved survival. Trial registration Clinical trials.gov NCT004936930 retrospectively registered 28 July 2009.


Assuntos
Vacinas Anticâncer , Citocinas , Células Dendríticas , Humanos , Imunidade , Imunoterapia , Proteômica , Células Th1
2.
J Drugs Dermatol ; 15(5): 583-98, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27168267

RESUMO

These studies were designed to determine the effect of stem cell-derived skin lineage precursor secretions on the intrinsic and extrinsic symptoms of human skin aging.
Human stem cells cultivated in balanced conditions were differentiated into skin lineage precursors, and shown to secrete large amounts of fetuin as well as multiple growth factors beneficial for human skin development and maintenance. The cell secretions were incorporated in two simple cosmetic formulations (serum and lotion) and investigated in an IRB-approved 12-week human trial that included 25 subjects in each group. Subjects were examined at 2, 4, 8, and 12 weeks by a dermatologist to evaluate safety, trans-epidermal water loss, wrinkles, firmness, radiance, texture, softness, and overall appearance. A sub-group of subjects from each group consented for biopsies for histological analyses.
Protein analyses in the cell secretions revealed a high concentration of the multifunctional alpha 2-HS glycoprotein (fetuin) along with a multitude of protein factors involved in the development and maintenance of healthy human skin. Clinical investigation demonstrated significant amelioration of the clinical signs of intrinsic and extrinsic skin aging, findings that were confirmed by significant changes in skin morphology, filaggrin, aquaporin 3, and collagen I content.
Our data strongly support our hypothesis that cosmetic application of stem cell-derived skin lineage precursor secretions containing fetuin and growth factors beneficial for human skin development and maintenance, positively influence intrinsic and extrinsic aging.

J Drugs Dermatol. 2016;15(5):583-598.


Assuntos
Cosméticos/administração & dosagem , Envelhecimento da Pele/efeitos dos fármacos , Creme para a Pele/administração & dosagem , Células-Tronco/metabolismo , alfa-2-Glicoproteína-HS/administração & dosagem , alfa-2-Glicoproteína-HS/metabolismo , Linhagem Celular , Células Cultivadas , Proteínas Filagrinas , Humanos , Envelhecimento da Pele/fisiologia
3.
J Surg Oncol ; 111(7): 862-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873455

RESUMO

BACKGROUND AND OBJECTIVES: Hepatocellular carcinoma (HCC) is often associated with chronic hepatitis due to hepatitis-B or -C viruses. Active specific immunotherapy (ASI) with autologous dendritic cells (DC) presenting antigens from autologous tumor stem cell (TC) lines is associated with promising long-term survival in metastatic cancer, but hepatitis patients were excluded. ASI might benefit high-risk primary HCC patients following surgical resection, but first it is important to show that ASI does not exacerbate hepatitis. METHODS: Previously untreated HCC patients with a solitary lesion > 5 cm, or three lesions with at least one > 3 cm, or more than three lesions, underwent surgical resection from which autologous TC lines were established. Irradiated TC were incubated with autologous DC to create DC-TC. After one course of trans-arterial chemoembolization therapy (TACE), three weekly subcutaneous injections of DC-TC suspended in granulocyte-macrophage colony stimulating factor were administered. Patients were monitored for eight weeks. RESULTS: HCC cell lines were established within five weeks for 15/15 patients. Eight patients, all with chronic hepatitis B, were treated. There was no increase in hepatic transaminases, hepatitis B antigens, or viral DNA. CONCLUSION: Autologous DC-TC did not exacerbate HBV in these HCC patients. A phase II efficacy trial is being planned.


Assuntos
Carcinoma Hepatocelular/terapia , Células Dendríticas/transplante , Hepatite B/terapia , Imunoterapia , Neoplasias Hepáticas/terapia , Células-Tronco Neoplásicas/transplante , Adulto , Idoso , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/virologia , Células Dendríticas/imunologia , Feminino , Seguimentos , Hepatite B/imunologia , Hepatite B/virologia , Vírus da Hepatite B/isolamento & purificação , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/imunologia , Prognóstico , Transplante Autólogo
4.
Dis Colon Rectum ; 56(11): 1290-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24105005

RESUMO

OBJECTIVE: This study aims to evaluate in vivo function of the external anal sphincter after transection and repair augmented with myogenic stem cells, and to establish normative electromyography parameters of the rodent external anal sphincter. DESIGN AND SETTING: Thirty-three Sprague-Dawley rodents underwent baseline needle electromyography of the external anal sphincter. Motor unit action potentials were obtained and normative parameters established. Animals were randomly assigned to a myogenic stem cell group (n = 24) or control group (n = 9). All underwent proctoepisiotomy. The control group underwent layered repair with phosphate-buffered saline injection to the external anal sphincter. The treatment group underwent identical repair with injection of myogenic stem cells 5.0 × 10. Baseline anal pressure recordings were collected and repeated 2 weeks postintervention, and electromyography was repeated at 2 and 4 weeks. Groups were compared across 3 time points with the use of repeated measures ANOVA. MAIN OUTCOME MEASURES: The primary outcomes measured were the functional recovery of rat anal sphincters after stem cell transplantation as assessed by objective electromyography and anal pressure measures. RESULTS: A mean of 17 motor unit action potentials were sampled per animal. At 2 weeks postrepair, there was a significant difference between control and transplant groups with respect to amplitude, duration, turns, and phases (p < 0.01 for each). No significant electromyography differences were seen at 4 weeks. Resting and peak anal pressures declined significantly at 2 weeks postinjury in the control but not in the stem cell group. LIMITATIONS: Use of a murine animal population limited the subjective feedback and wider applicability. CONCLUSIONS: In vivo functional studies show recovery of anal sphincter pressures and electromyography to preinjury levels by day 14 in the myogenic stem cell group but not controls. At 4 weeks, all electromyography parameters returned to baseline irrespective of group. Restoration of function may be accelerated by the transplantation of myogenic stem cells and associated trophic factors.


Assuntos
Canal Anal/lesões , Canal Anal/cirurgia , Mioblastos Esqueléticos/transplante , Transplante de Células-Tronco , Potenciais de Ação , Canal Anal/fisiologia , Análise de Variância , Animais , Eletromiografia , Feminino , Manometria , Modelos Animais , Contração Muscular , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
5.
Hum Vaccin Immunother ; 19(1): 2198467, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37133853

RESUMO

A promising personal immunotherapy is autologous dendritic cells (DC) loaded ex vivo with autologous tumor antigens (ATA) derived from self-renewing autologous cancer cells. DC-ATA are suspended in granulocyte-macrophage colony stimulating factor at the time of each subcutaneous injection. Previously, irradiated autologous tumor cell vaccines have produced encouraging results in 150 cancer patients, but the DC-ATA vaccine demonstrated superiority in single-arm and randomized trials in metastatic melanoma. DC-ATA have been injected into more than 200 patients with melanoma, glioblastoma, and ovarian, hepatocellular, and renal cell cancers. Key observations include: [1] greater than 95% success rates for tumor cell cultures and monocyte collection for dendritic cell production; [2] injections are well-tolerated; [3] the immune response is rapid and includes primarily TH1/TH17 cellular responses; [4] efficacy has been suggested by delayed but durable complete tumor regressions in patients with measurable disease, by progression-free survival in glioblastoma, and by overall survival in melanoma.


Assuntos
Vacinas Anticâncer , Glioblastoma , Neoplasias Renais , Melanoma , Humanos , Glioblastoma/terapia , Melanoma/terapia , Antígenos de Neoplasias , Células Dendríticas
6.
J Exp Clin Cancer Res ; 41(1): 344, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517865

RESUMO

BACKGROUND: Vaccine immunotherapy may improve survival in Glioblastoma (GBM). A multicenter phase II trial was designed to determine: (1) the success rate of manufacturing the Aivita GBM vaccine (AV-GBM-1), (2) Adverse Events (AE) associated with AV-GBM-1 administration, and (3) survival. METHODS: Fresh suspected glioblastoma tissue was collected during surgery, and patients with pathology-confirmed GBM enrolled before starting concurrent Radiation Therapy and Temozolomide (RT/TMZ) with Intent to Treat (ITT) after recovery from RT/TMZ. AV-GBM-1 was made by incubating autologous dendritic cells with a lysate of irradiated autologous Tumor-Initiating Cells (TICs). Eligible patients were adults (18 to 70 years old) with a Karnofsky Performance Score (KPS) of 70 or greater, a successful TIC culture, and sufficient monocytes collected. A cryopreserved AV-GBM-1 dose was thawed and admixed with 500 µg of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) before every subcutaneous (s.c.) administration. RESULTS: Success rates were 97% for both TIC production and monocyte collection. AV-GBM-1 was manufactured for 63/63 patients; 60 enrolled per ITT; 57 started AV-GBM-1. The most common AEs attributed to AV-GBM-1 were local injection site reactions (16%) and flu-like symptoms (10%). Treatment-emergent AEs included seizures (33%), headache (37%), and focal neurologic symptoms (28%). One patient discontinued AV-GBM-1 because of seizures. Median Progression-Free Survival (mPFS) and median Overall Survival (mOS) from ITT enrollment were 10.4 and 16.0 months, respectively. 2-year Overall Survival (OS) is 27%. CONCLUSIONS: AV-GBM-1 was reliably manufactured. Treatment was well-tolerated, but there were numerous treatment-emergent central nervous system AEs. mPFS was longer than historical benchmarks, though no mOS improvement was noted. TRIAL REGISTRATION: NCT, NCT03400917 , Registered 10 January 2018.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Vacinas , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Células Dendríticas , Glioblastoma/tratamento farmacológico , Convulsões/tratamento farmacológico , Temozolomida , Resultado do Tratamento , Vacinas/efeitos adversos
7.
Hum Vaccin Immunother ; 18(6): 2100189, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36018753

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a world-wide pandemic. Internationally, because of availability, accessibility, and distribution issues, there is a need for additional vaccines. This study aimed to: establish the feasibility of personal dendritic cell vaccines to the SARS-CoV-2 spike protein, establish the safety of a single subcutaneous vaccine injection, and determine the antigen-specific immune response following vaccination. In Phase 1, 31 subjects were assigned to one of nine formulations of autologous dendritic cells and lymphocytes (DCL) incubated with 0.10, 0.33, or 1.0 µg of recombinant SARS-CoV-2 spike protein, and admixed with saline or 250 or 500 µg of granulocyte-macrophage colony-stimulating factor (GM-CSF) prior to injection, then assessed for safety and humoral response. In Phase 2, 145 subjects were randomized to one of three formulations defined by incubation with the same three quantities of spike protein without GM-CSF, then assessed for safety and cellular response. Vaccines were successfully manufactured for every subject at point-of-care. Approximately 46.4% of subjects had a grade 1 adverse event (AE); 6.5% had a grade 2 AE. Among 169 evaluable subjects, there were no acute allergic, grade 3 or 4, or serious AE. In Phase 1, anti-receptor binding domain antibodies were increased in 70% of subjects on day-28. In Phase 2, in the 127 subjects who did not have high levels of gamma interferon-producing cells at baseline, 94.4% had increased by day 14 and 96.8% by day 28. Point-of-care personal vaccine manufacturing was feasible. Further development of such subject-specific vaccines is warranted.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Fator Estimulador de Colônias de Granulócitos e Macrófagos , SARS-CoV-2 , Sistemas Automatizados de Assistência Junto ao Leito , Glicoproteína da Espícula de Coronavírus , Imunidade Celular , Células Dendríticas , Anticorpos Antivirais
8.
Stem Cells ; 28(1): 152-63, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19877167

RESUMO

Evidence that cell transplants can improve recovery outcomes in spinal cord injury (SCI) models substantiates treatment strategies involving cell replacement for humans with SCI. Most pre-clinical studies of cell replacement in SCI examine thoracic injury models. However, as most human injuries occur at the cervical level, it is critical to assess potential treatments in cervical injury models and examine their effectiveness using at-level histological and functional measures. To directly address cervical SCI, we used a C5 midline contusion injury model and assessed the efficacy of a candidate therapeutic for thoracic SCI in this cervical model. The contusion generates reproducible, bilateral movement and histological deficits, although a number of injury parameters such as acute severity of injury, affected gray-to-white matter ratio, extent of endogenous remyelination, and at-level locomotion deficits do not correspond with these parameters in thoracic SCI. On the basis of reported benefits in thoracic SCI, we transplanted human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into this cervical model. hESC-derived OPC transplants attenuated lesion pathogenesis and improved recovery of forelimb function. Histological effects of transplantation included robust white and gray matter sparing at the injury epicenter and, in particular, preservation of motor neurons that correlated with movement recovery. These findings further our understanding of the histopathology and functional outcomes of cervical SCI, define potential therapeutic targets, and support the use of these cells as a treatment for cervical SCI.


Assuntos
Vértebras Cervicais/cirurgia , Células-Tronco Embrionárias/transplante , Regeneração Nervosa , Oligodendroglia/transplante , Traumatismos da Medula Espinal/cirurgia , Transplante de Células-Tronco , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Movimento Celular , Sobrevivência Celular , Vértebras Cervicais/metabolismo , Vértebras Cervicais/patologia , Vértebras Cervicais/fisiopatologia , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Feminino , Membro Anterior/inervação , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Atividade Motora , Neurônios Motores/metabolismo , Oligodendroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo
9.
Geroscience ; 43(6): 2635-2652, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34427856

RESUMO

Aged individuals are at risk to experience slow and incomplete muscle recovery following periods of disuse atrophy. While several therapies have been employed to mitigate muscle mass loss during disuse and improve recovery, few have proven effective at both. Therefore, the purpose of this study was to examine the effectiveness of a uniquely developed secretome product (STEM) on aged skeletal muscle mass and function during disuse and recovery. Aged (22 months) male C57BL/6 were divided into PBS or STEM treatment (n = 30). Mice within each treatment were assigned to either ambulatory control (CON; 14 days of normal cage ambulation), 14 days of hindlimb unloading (HU), or 14 days of hindlimb unloading followed by 7 days of recovery (recovery). Mice were given an intramuscular delivery into the hindlimb muscle of either PBS or STEM every other day for the duration of their respective treatment group. We found that STEM-treated mice compared to PBS had greater soleus muscle mass, fiber cross-sectional area (CSA), and grip strength during CON and recovery experimental conditions and less muscle atrophy and weakness during HU. Muscle CD68 +, CD11b + and CD163 + macrophages were more abundant in STEM-treated CON mice compared to PBS, while only CD68 + and CD11b + macrophages were more abundant during HU and recovery conditions with STEM treatment. Moreover, STEM-treated mice had lower collagen IV and higher Pax7 + cell content compared to PBS across all experimental conditions. As a follow-up to examine the cell autonomous role of STEM on muscle, C2C12 myotubes were given STEM or horse serum media to examine myotube fusion/size and effects on muscle transcriptional networks. STEM-treated C2C12 myotubes were larger and had a higher fusion index and were related to elevated expression of transcripts associated with extracellular matrix remodeling. Our results demonstrate that STEM is a unique cocktail that possesses potent immunomodulatory and cytoskeletal remodeling properties that may have translational potential to improve skeletal muscle across a variety of conditions that adversely effect aging muscle.


Assuntos
Células-Tronco Pluripotentes , Secretoma , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia
10.
Front Neurosci ; 15: 752958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764853

RESUMO

End-stage age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are two major retinal degenerative (RD) conditions that result in irreversible vision loss. Permanent eye damage can also occur in battlefields or due to accidents. This suggests there is an unmet need for developing effective strategies for treating permanent retinal damages. In previous studies, co-grafted sheets of fetal retina with its retinal pigment epithelium (RPE) have demonstrated vision improvement in rat retinal disease models and in patients, but this has not yet been attempted with stem-cell derived tissue. Here we demonstrate a cellular therapy for irreversible retinal eye injuries using a "total retina patch" consisting of retinal photoreceptor progenitor sheets and healthy RPE cells on an artificial Bruch's membrane (BM). For this, retina organoids (ROs) (cultured in suspension) and polarized RPE sheets (cultured on an ultrathin parylene substrate) were made into a co-graft using bio-adhesives [gelatin, growth factor-reduced matrigel, and medium viscosity (MVG) alginate]. In vivo transplantation experiments were conducted in immunodeficient Royal College of Surgeons (RCS) rats at advanced stages of retinal degeneration. Structural reconstruction of the severely damaged retina was observed based on histological assessments and optical coherence tomography (OCT) imaging. Visual functional assessments were conducted by optokinetic behavioral testing and superior colliculus electrophysiology. Long-term survival of the co-graft in the rat subretinal space and improvement in visual function were observed. Immunohistochemistry showed that co-grafts grew, generated new photoreceptors and developed neuronal processes that were integrated into the host retina. This novel approach can be considered as a new therapy for complete replacement of a degenerated retina.

11.
Front Cell Neurosci ; 15: 796903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955757

RESUMO

Pluripotent stem cell-derived organoid technologies have opened avenues to preclinical basic science research, drug discovery, and transplantation therapy in organ systems. Stem cell-derived organoids follow a time course similar to species-specific organ gestation in vivo. However, heterogeneous tissue yields, and subjective tissue selection reduce the repeatability of organoid-based scientific experiments and clinical studies. To improve the quality control of organoids, we introduced a live imaging technique based on two-photon microscopy to non-invasively monitor and characterize retinal organoids' (RtOgs') long-term development. Fluorescence lifetime imaging microscopy (FLIM) was used to monitor the metabolic trajectory, and hyperspectral imaging was applied to characterize structural and molecular changes. We further validated the live imaging experimental results with endpoint biological tests, including quantitative polymerase chain reaction (qPCR), single-cell RNA sequencing, and immunohistochemistry. With FLIM results, we analyzed the free/bound nicotinamide adenine dinucleotide (f/b NADH) ratio of the imaged regions and found that there was a metabolic shift from glycolysis to oxidative phosphorylation. This shift occurred between the second and third months of differentiation. The total metabolic activity shifted slightly back toward glycolysis between the third and fourth months and stayed relatively stable between the fourth and sixth months. Consistency in organoid development among cell lines and production lots was examined. Molecular analysis showed that retinal progenitor genes were expressed in all groups between days 51 and 159. Photoreceptor gene expression emerged around the second month of differentiation, which corresponded to the shift in the f/b NADH ratio. RtOgs between 3 and 6 months of differentiation exhibited photoreceptor gene expression levels that were between the native human fetal and adult retina gene expression levels. The occurrence of cone opsin expression (OPN1 SW and OPN1 LW) indicated the maturation of photoreceptors in the fourth month of differentiation, which was consistent with the stabilized level of f/b NADH ratio starting from 4 months. Endpoint single-cell RNA and immunohistology data showed that the cellular compositions and lamination of RtOgs at different developmental stages followed those in vivo.

12.
Lab Chip ; 21(17): 3361-3377, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34236056

RESUMO

Retinal degeneration is a leading cause of vision impairment and blindness worldwide and medical care for advanced disease does not exist. Stem cell-derived retinal organoids (RtOgs) became an emerging tool for tissue replacement therapy. However, existing RtOg production methods are highly heterogeneous. Controlled and predictable methodology and tools are needed to standardize RtOg production and maintenance. In this study, we designed a shear stress-free micro-millifluidic bioreactor for nearly labor-free retinal organoid maintenance. We used a stereolithography (SLA) 3D printer to fabricate a mold from which Polydimethylsiloxane (PDMS) was cast. We optimized the chip design using in silico simulations and in vitro evaluation to optimize mass transfer efficiency and concentration uniformity in each culture chamber. We successfully cultured RtOgs at three different differentiation stages (day 41, 88, and 128) on an optimized bioreactor chip for more than 1 month. We used different quantitative and qualitative techniques to fully characterize the RtOgs produced by static dish culture and bioreactor culture methods. By analyzing the results from phase contrast microscopy, single-cell RNA sequencing (scRNA seq), quantitative polymerase chain reaction (qPCR), immunohistology, and electron microscopy, we found that bioreactor-cultured RtOgs developed cell types and morphology comparable to static cultured ones and exhibited similar retinal genes expression levels. We also evaluated the metabolic activity of RtOgs in both groups using fluorescence lifetime imaging (FLIM), and found that the outer surface region of bioreactor cultured RtOgs had a comparable free/bound NADH ratio and overall lower long lifetime species (LLS) ratio than static cultured RtOgs during imaging. To summarize, we validated an automated micro-millifluidic device with significantly reduced shear stress to produce RtOgs of comparable quality to those maintained in conventional static culture.


Assuntos
Dispositivos Lab-On-A-Chip , Organoides , Reatores Biológicos , Diferenciação Celular , Retina
13.
Hum Vaccin Immunother ; 16(4): 742-755, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31625825

RESUMO

This report describes efforts to understand the immune mechanism of action that led to a complete response in a patient with progressive, refractory, metastatic melanoma after treatment with a therapeutic vaccine consisting of autologous dendritic cells (DC) loaded with autologous tumor antigens (ATA) derived from cells that were self-renewing in cell culture. Her histocompatibility type proved to be HLA B27 with extensive mutations in the HLA-A locus. Exomic analysis of proliferating tumor cells revealed more than 2800 non-synonymous mutations compared to her leukocytes. Histology of resected tumor lesions showed no evidence of an existing or suppressed immune response. In in vitro mixed cell cultures, DC loaded with ATA induced increased IL-22 expression, and a four-fold increase in CD8 + T lymphocytes. Cryopreserved blood samples obtained at week-0, 1 week before the first of three-weekly vaccine injections, and at week-4, 1 week after the third dose, were analyzed by protein array and compared for 110 different serum markers. At baseline, she had marked elevations of amyloid A, IL-12p40, IL21, IL-22, IL-10, IL-16, GROa, TNF-alpha, IL-3, and IL-2, and a lesser elevation of IL-15. One week after 3 weekly vaccinations she had a further 80% increase in amyloid A, a further 66% increase in IL-22, a 92% decrease in IL12p40, a 45% decrease in TGF-ß and 26% decrease in IL-10. The data suggested that by 3 weeks after the first DCV injection, vaccine-induced changes in this particular patient were most consistent with enhanced innate and Th1 immune responses rather than Th2 or Th17.


Assuntos
Vacinas Anticâncer , Melanoma , Antígenos de Neoplasias/genética , Células Dendríticas , Feminino , Humanos , Melanoma/terapia , Proteômica
14.
Invest Ophthalmol Vis Sci ; 61(11): 34, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32945842

RESUMO

Purpose: To study if human embryonic stem cell-derived photoreceptors could survive and function without the support of retinal pigment epithelium (RPE) after transplantation into Royal College of Surgeons rats, a rat model of retinal degeneration caused by RPE dysfunction. Methods: CSC14 human embryonic stem cells were differentiated into primordial eye structures called retinal organoids. Retinal organoids were analyzed by quantitative PCR and immunofluorescence and compared with human fetal retina. Retinal organoid sheets (30-70 day of differentiation) were transplanted into immunodeficient RCS rats, aged 44 to 56 days. The development of transplant organoids in vivo in relation to the host was examined by optical coherence tomography. Visual function was assessed by optokinetic testing, electroretinogram, and superior colliculus electrophysiologic recording. Cryostat sections were analyzed for various retinal, synaptic, and donor markers. Results: Retinal organoids showed similar gene expression to human fetal retina transplanted rats demonstrated significant improvement in visual function compared with RCS nonsurgery and sham surgery controls by ERGs at 2 months after surgery (but not later), optokinetic testing (up to 6 months after surgery) and electrophysiologic superior colliculus recordings (6-8 months after surgery). The transplanted organoids survived more than 7 months; developed photoreceptors with inner and outer segments, and other retinal cells; and were well-integrated within the host. Conclusions: This study, to our knowledge, is the first to show that transplanted photoreceptors survive and function even with host's dysfunctional RPE. Our findings suggest that transplantation of organoid sheets from stem cells may be a promising approach/therapeutic for blinding diseases.


Assuntos
Células Fotorreceptoras/metabolismo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Organoides/metabolismo , Organoides/transplante , Células Fotorreceptoras/patologia , Ratos , Ratos Mutantes , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica
15.
Methods Mol Biol ; 549: 59-75, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19378196

RESUMO

Oligodendrocytes are a type of glial cells that play a critical role in supporting the central nervous system (CNS), in particular insulating axons within the CNS by wrapping them with a myelin sheath, thereby enabling saltatory conduction. They are lost, and myelin damaged - demyelination - in a wide variety of neurological disorders. Replacing depleted cell types within demyelinated areas, however, has been shown experimentally to achieve remyelination and so help restore function. One method to produce oligodendrocytes for cellular replacement therapies is through the use of progenitor or stem cells. The ability to differentiate progenitor or stem cells into high-purity fates not only permits the generation of specific cells for transplantation therapies, but also provides powerful tools for studying cellular mechanisms of development. This chapter outlines methods of generating high-purity OPCs from multipotent neonatal progenitor or human embryonic stem cells.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células-Tronco Multipotentes/fisiologia , Oligodendroglia/fisiologia , Células-Tronco/fisiologia , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Forma Celular , Células Cultivadas , Humanos , Camundongos , Células-Tronco Multipotentes/citologia , Oligodendroglia/citologia , Células-Tronco/citologia
16.
Oncotarget ; 10(51): 5359-5371, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31523394

RESUMO

Because of its role as an immune checkpoint, levels of soluble programmed cell death protein-1 (sPD-1) could be useful as a prognostic biomarker or predictive biomarker in cancer patients treated with vaccines. Very low levels of sPD-1 may indicate lack of an existing anti-cancer immune response; very high levels may indicate an active immune response that is suppressed. In between these extremes, a decrease in PD-1 following injections of an anti-cancer vaccine may indicate an enhanced immune response that has not been suppressed. Blood samples obtained during a randomized trial in patients with metastatic melanoma were tested from 22 patients treated with a tumor cell vaccine (TCV) and 17 treated with a dendritic cell vaccine (DCV). Survival was better in DCV-treated patients. sPD-1 was measured at week-0, one week before the first of three weekly subcutaneous injections, and at week-4, one week after the third injection. The combination of a very low baseline sPD-1, or absence of a very high PD-1 at baseline followed by a decline in sPD-1 at week-4, was predictive of surviving three or more years in DCV-treated patients, but not TCV-treated. Among DCV-treated patients, these sPD-1 criteria appropriately classified 8/10 (80%) of 3-year survivors, and 6/7 (86%) of patients who did not survive three years. These preliminary observations suggest that sPD-1 might be a useful biomarker for melanoma patients being considered for treatment with this DCV vaccine, and/or to predict efficacy after only three injections, but this would have to be confirmed in larger studies.

17.
J Immunother Cancer ; 6(1): 19, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510745

RESUMO

BACKGROUND: Despite improved survival following checkpoint inhibitors, there is still a potential role for anti-cancer therapeutic vaccines. Because of biological heterogeneity and neoantigens resulting from each patient's mutanome, autologous tumor may be the best source of tumor-associated antigens (TAA) for vaccines. Ex vivo loading of autologous dendritic cells with TAA may be associated with superior clinical outcome compared to injecting irradiated autologous tumor cells. We conducted a randomized phase II trial to compare autologous tumor cell vaccines (TCV) and autologous dendritic cell vaccines (DCV) loaded with autologous TAA. METHODS: Short-term autologous tumor cell lines were established from metastatic tumor. Vaccines were admixed with 500 micrograms of GM-CSF and injected weekly for 3 weeks, then at weeks 8, 12,16, 20, and 24. The primary endpoint was overall survival. Secondary objectives were identification of adverse events, and results of delayed type hypersensitivity (DTH) reactions to intradermal tumor cell injections. RESULTS: Forty-two patients were randomized. All were followed from randomization until death or for five years; none were lost to follow-up. DCV was associated with longer survival: median 43.4 versus 20.5 months (95% CI, 18.6 to > 60 versus 9.3 to 32.3 months) and a 70% reduction in the risk of death (hazard ratio = 0.304, p = 0.0053, 95% CI, 0.131 to 0.702). Tumor DTH reactions were neither prognostic nor predictive. The most common treatment-related adverse events were mild to moderate local injection site reactions and flu-like symptoms; but grade 2 treatment-related adverse events were more frequent with TCV. Serum marker analyses at week-0 and week-4 showed that serum markers were similar at baseline in each arm, but differed after vaccination. CONCLUSIONS: This is the only human clinical trial comparing DCV and TCV as platforms for autologous TAA presentation. DCV was associated with minimal toxicity and long-term survival in patients with metastatic melanoma. DTH to autologous tumor cells was neither prognostic for survival nor predictive of benefit for either vaccine. TRIAL REGISTRATION: Clinical trials.gov NCT00948480 retrospectively registered 28 July 2009.


Assuntos
Vacinas Anticâncer/uso terapêutico , Células Dendríticas/transplante , Melanoma/terapia , Citocinas/sangue , Feminino , Humanos , Hipersensibilidade Tardia , Masculino , Melanoma/sangue , Pessoa de Meia-Idade , Análise de Sobrevida , Transplante Autólogo/efeitos adversos
18.
Invest Ophthalmol Vis Sci ; 59(6): 2586-2603, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847666

RESUMO

Purpose: To investigate whether sheets of retina organoids derived from human embryonic stem cells (hESCs) can differentiate, integrate, and improve visual function in an immunodeficient rat model of severe retinal degeneration (RD). Methods: 3D hESC-derived retina organoids were analyzed by quantitative PCR and immunofluorescence. Sheets dissected from retina organoids (30-65 days of differentiation) were transplanted into the subretinal space of immunodeficient rho S334ter-3 rats. Visual function was tested by optokinetic testing and electrophysiologic recording in the superior colliculus. Transplants were analyzed at 54 to 300 days postsurgery by immunohistochemistry for donor and retinal markers. Results: Retina organoids contained multiple retinal cell types, including progenitor populations capable of developing new cones and rods. After transplantation into an immunodeficient rat model of severe RD, the transplanted sheets differentiated, integrated, and produced functional photoreceptors and other retinal cells, according to the longer human developmental timetable. Maturation of the transplanted retinal cells created visual improvements that were measured by optokinetic testing and electrophysiologic recording in the superior colliculus. Immunohistochemistry analysis indicated that the donor cells were synaptically active. Extensive transplant projections could be seen within the host RD retina. Optical coherence tomography imaging monitored long-term transplant growth and survival up to 10 months postsurgery. Conclusions: These data demonstrate that the transplantation of sheets dissected from hESC-derived retina organoids is a potential therapeutic method for restoring vision in advanced stages of RD.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Organoides/citologia , Retina/citologia , Degeneração Retiniana/terapia , Transplante de Células-Tronco , Acuidade Visual/fisiologia , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Eletrofisiologia , Humanos , Microscopia de Fluorescência , Nistagmo Optocinético/fisiologia , Organoides/metabolismo , Ratos , Ratos Nus , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/fisiopatologia , Tomografia de Coerência Óptica
19.
BMC Neurol ; 7: 30, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17822568

RESUMO

BACKGROUND: Chronic spinal cord injury (SCI) can lead to an insidious decline in motor and sensory function in individuals even years after the initial injury and is accompanied by a slow and progressive cytoarchitectural destruction. At present, no pathological mechanisms satisfactorily explain the ongoing degeneration. METHODS: Adult female Sprague-Dawley rats were anesthetized laminectomized at T10 and received spinal cord contusion injuries with a force of 250 kilodynes using an Infinite Horizon Impactor. Animals were randomly distributed into 5 groups and killed 1 (n = 4), 28 (n = 4), 120 (n = 4), 450 (n = 5), or 540 (n = 5) days after injury. Morphometric and immunohistochemical studies were then performed on 1 mm block sections, 6 mm cranial and 6 mm caudal to the lesion epicenter. The SPSS 11.5 t test was used to determine differences between quantitative measures. RESULTS: Here, we document the first report of an ascending central canal dilation and progressive ependymal disruption cranial to the epicenter of injury in a contusion model of chronic SCI, which was characterized by extensive dural fibrosis and intraparenchymal cystic cavitation. Expansion of the central canal lumen beyond a critical diameter corresponded with ependymal cell ciliary loss, an empirically predictable thinning of the ependymal region, and a decrease in cell proliferation in the ependymal region. Large, aneurysmal dilations of the central canal were accompanied by disruptions in the ependymal layer, periependymal edema and gliosis, and destruction of the adjacent neuropil. CONCLUSION: Cells of the ependymal region play an important role in CSF homeostasis, cellular signaling and wound repair in the spinal cord. The possible effects of this ascending pathology on ependymal function are discussed. Our studies suggest central canal dilation and ependymal region disruption as steps in the pathogenesis of chronic SCI, identify central canal dilation as a marker of chronic SCI and provide novel targets for therapeutic intervention.


Assuntos
Dilatação/métodos , Modelos Animais de Doenças , Epêndima/patologia , Traumatismos da Medula Espinal/patologia , Animais , Doença Crônica , Progressão da Doença , Feminino , Ratos , Ratos Sprague-Dawley
20.
J Neurosci ; 25(19): 4694-705, 2005 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15888645

RESUMO

Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.


Assuntos
Locomoção/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Fibroblastos/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Imageamento Tridimensional/métodos , Imuno-Histoquímica/métodos , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/transplante , Oligopeptídeos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição SOXE , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA