Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 194(3): 1889-1905, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37949839

RESUMO

Small RNAs are widely involved in plant immune responses. However, the role of long small RNAs (25 to 40 nt) in monocot plant disease resistance is largely unknown. Here, we identified a long small RNA (lsiR76113) from rice (Oryza sativa) that is downregulated by Magnaporthe oryzae infection and targets a gene encoding CYCLIC NUCLEOTIDE-GATED CHANNEL 5 (CNGC5). The cngc5 mutant lines were more susceptible to M. oryzae than the wild type, while knocking down lsiR76113 in transgenic rice plants promoted pathogen resistance. A protoplast transient expression assay showed that OsCNGC5 promotes Ca2+ influx. These results demonstrate that OsCNGC5 enhances rice resistance to rice blast by increasing the cytosolic Ca2+ concentration. Importantly, exogenous Ca2+ application enhanced rice M. oryzae resistance by affecting reactive oxygen species (ROS) production. Moreover, cngc5 mutants attenuated the PAMP-triggered immunity response, including chitin-induced and flg22-induced ROS bursts and protein phosphorylation in the mitogen-activated protein kinase cascade, indicating that OsCNGC5 is essential for PAMP-induced calcium signaling in rice. Taken together, these results suggest that lsiR76113-mediated regulation of Ca2+ influx is important for PTI responses and disease resistance in rice.


Assuntos
Cálcio , Resistência à Doença , Resistência à Doença/genética , Espécies Reativas de Oxigênio , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Plantas Geneticamente Modificadas , RNA , Nucleotídeos Cíclicos
2.
Plant J ; 116(5): 1309-1324, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614043

RESUMO

Citrus production is severely threatened by the devastating Huanglongbing (HLB) disease globally. By studying and analyzing the defensive behaviors of an HLB-tolerant citrus cultivar 'Shatangju', we discovered that citrus can sense Candidatus Liberibacter asiaticus (CLas) infection and induce immune responses against HLB, which can be further strengthened by both endogenously produced and exogenously applied methyl salicylate (MeSA). This immune circuit is turned on by an miR2977-SAMT (encoding a citrus Salicylate [SA] O-methyltransferase) cascade, by which CLas infection leads to more in planta MeSA production and aerial emission. We provided both transgenic and multi-year trail evidences that MeSA is an effective community immune signal. Ambient MeSA accumulation and foliage application can effectively induce defense gene expression and significantly boost citrus performance. We also found that miRNAs are battle fields between citrus and CLas, and about 30% of the differential gene expression upon CLas infection are regulated by miRNAs. Furthermore, CLas hijacks host key processes by manipulating key citrus miRNAs, and citrus employs miRNAs that coordinately regulate defense-related genes. Based on our results, we proposed that miRNAs and associated components are key targets for engineering or breeding resistant citrus varieties. We anticipate that MeSA-based management, either induced expression or external application, would be a promising tool for HLB control.


Assuntos
Citrus , MicroRNAs , Rhizobiaceae , Citrus/fisiologia , Doenças das Plantas , Melhoramento Vegetal , Salicilatos/metabolismo , Liberibacter/genética , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Eur J Nutr ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693451

RESUMO

PURPOSE: To explore the joint association of dietary patterns and adiposity with colorectal cancer (CRC), and whether adiposity mediates the relationship between dietary patterns and CRC risk, which could provide deeper insights into the underlying pathogenesis of CRC. METHODS: The data of 307,023 participants recruited between 2006 and 2010 were extracted from the UK Biobank study. Healthy diet scores were calculated based on self-reported dietary data at baseline, and participants were categorized into three groups, namely, low, intermediate, and high diet score groups. Cox regression models with hazard ratios (HRs) and 95% confidence intervals (CIs) were used to estimate the effects of the healthy diet score on CRC incidence, adjusting for various covariates. Furthermore, the mediation roles of obesity and central obesity between the healthy diet score and CRC risk were assessed using a counterfactual causal analysis based on Cox regression model. Additionally, joint association between dietary patterns and adiposity on CRC risks was assessed on the additive and multiplicative scales. RESULTS: Over a median 6.2-year follow-up, 3,276 participants developed CRC. After adjusting for sociodemographic and lifestyle factors, a lower risk of CRC incidence was found for participants with intermediate (HR = 0.83, 95% CI: 0.72 to 0.95) and high diet scores (HR = 0.73, 95% CI: 0.62 to 0.87) compared to those with low diet scores. When compared with the low diet score group, obesity accounted for 4.13% and 7.93% of the total CRC effect in the intermediate and high diet score groups, respectively, while central obesity contributed to 3.68% and 10.02% of the total CRC risk in the intermediate and high diet score groups, respectively. The mediating effect of adiposity on CRC risk was significant in men but not in women. Concurrent unhealthy diet and adiposity multiplied CRC risk. CONCLUSION: Adiposity-mediated effects were limited in the link between dietary patterns and CRC incidence, implying that solely addressing adiposity may not sufficiently reduce CRC risk. Interventions, such as improving dietary quality in people with adiposity or promoting weight control in those with unhealthy eating habits, may provide an effective strategy to reduce CRC risk.

4.
Ren Fail ; 46(1): 2298900, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38178568

RESUMO

BACKGROUND: Acute kidney injury (AKI) is one of the most common complications for critically ill patients with cirrhosis, but it has remained unclear whether urine output fluctuations are associated with the risk of AKI in such patients. Thus, we explored the influence of 24-h urine-output trajectory on AKI in patients with cirrhosis through latent category trajectory modeling. MATERIALS AND METHODS: This retrospective cohort study examined patients with cirrhosis using the MIMIC-IV database. Changes in the trajectories of urine output within 24 h after admission to the intensive care unit (ICU) were categorized using latent category trajectory modeling. The outcome examined was the occurrence of AKI during ICU hospitalization. The risk of AKI in patients with different trajectory classes was explored using the cumulative incidence function (CIF) and the Fine-Gray model with the sub-distribution hazard ratio (SHR) and the 95% confidence interval (CI) as size effects. RESULTS: The study included 3,562 critically ill patients with cirrhosis, of which 2,467 (69.26%) developed AKI during ICU hospitalization. The 24-h urine-output trajectories were split into five classes (Classes 1-5). The CIF curves demonstrated that patients with continuously low urine output (Class 2), a rapid decline in urine output after initially high levels (Class 3), and urine output that decreased slowly and then stabilized at a lower level (Class 4) were at higher risk for AKI than those with consistently moderate urine output (Class 1). After fully adjusting for various confounders, Classes 2, 3, and 4 were associated with a higher risk of AKI compared with Class 1, and the respective SHRs (95% CIs) were 2.56 (1.87-3.51), 1.86 (1.34-2.59), and 1.83 1.29-2.59). CONCLUSIONS: The 24-h urine-output trajectory is significantly associated with the risk of AKI in critically ill patients with cirrhosis. More attention should be paid to the dynamic nature of urine-output changes over time, which may help guide early intervention and improve patients' prognoses.


Assuntos
Injúria Renal Aguda , Estado Terminal , Humanos , Estudos Retrospectivos , Estudos de Coortes , Cirrose Hepática/complicações , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia
5.
Ann Hematol ; 102(9): 2375-2386, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468671

RESUMO

Leukemia and its subtypes impose a major public health challenge in China. Identifying the secular trend of leukemia burden is critical to facilitate optimal healthcare planning and improve the management of leukemia. The incidence rates of leukemia from 1990 to 2019 were collected from the Global Burden of Disease Study 2019 database according to the following: subtype (acute lymphocytic leukemia [ALL], acute myeloid leukemia [AML], chronic lymphocytic leukemia [CLL], chronic myelogenous leukemia [CML], and other leukemia subtypes), sex, and age group. The average annual percentage changes and relative risks were calculated using joinpoint regression and the age-period-cohort model, respectively. The Bayesian age-period-cohort model was also applied to predict the future trend of the incidence of leukemia and its subtypes in the next 25 years. From 1990 to 2019, the age-standardized incidence rates (ASIRs) of leukemia slightly declined in males and females, which is similar to the trend of other leukemia subtypes. However, the four major leukemia subtypes, namely, ALL, AML, CLL, and CML, have been on the rise over the past three decades. The incidence rates of leukemia in children and the elderly were considerably higher than those in other age groups in males and females. Age effects were the most influential risk factor for leukemia incidence. Period effects showed that the risks of leukemia and its subtypes incidence increased with time. For cohort effects, the risks of leukemia and its subtypes were higher among the early-born cohorts compared with the late-born cohorts. The ASIRs of leukemia and its subtypes will continue to increase in the next 25 years. The burden of leukemia and its subtypes is expected to continue to increase in the next 25 years in males and females. A comprehensive understanding of the risk characteristics and disease pattern of leukemia and its subtypes is needed to formulate timely and effective intervention measures to reduce the leukemia burden in China.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Masculino , Criança , Feminino , Humanos , Idoso , Adulto , Leucemia Linfocítica Crônica de Células B/epidemiologia , Teorema de Bayes , Incidência , Leucemia Mielogênica Crônica BCR-ABL Positiva/epidemiologia , China/epidemiologia , Fatores de Risco , Efeitos Psicossociais da Doença
6.
Plant Dis ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368447

RESUMO

Lonicera japonica is a perennial shrub that has been used since ancient times as a medicine to clear heat and detoxify poisons. Its branches (the vine of L. japonica) and unopened flower buds (honeysuckle) can be used as medicine to treat external wind heat or febrile disease fever (Shang, Pan, Li, Miao, & Ding, 2011). In July 2022, a serious disease was observed in L. japonica individuals planted in an area of experimental base of Nanjing Agricultural University (N 32°02', E 118°86'), Nanjing, Jiangsu Province, China. More than 200 Lonicera plants were surveyed, and the incidence of leaf rot in Lonicera leaves was over 80%. The initial symptoms were of chlorotic spots and gradual development of visible white mycelia and powdery substances (fungal spores) were observed on the leaves. Both the front and back of the leaves gradually appeared as brown diseased spots. Thus, a combination of multiple disease spots causes leaf wilting and the leaves eventually fall off. Leaves with typical symptoms were collected and cut into approximately 5 mm square fragments. The tissues were sterilized in 1% NaOCl for 90 s and 75% ethanol for 15 s and then washed with sterile water three times. The treated leaves were cultured on Potato Dextrose Agar (PDA) medium at 25℃. When mycelia grew around the leaf pieces, fungal plugs were collected along the outer edge of the colony and transferred to fresh PDA plates using a cork borer. Eight fungal strains with the same morphology were obtained after three rounds of subculturing. The colony was initially white with a fast growth rate, and occupied a 9-cm-diameter culture dish within 24 h. The colony turned gray-black in the later stages. After 2 days, small black sporangia spots appeared on top of the hyphae. The sporangia were yellow when immature, and black at maturity. The spores were oval with an average size of 29.6 (22.4-36.9) × 35.3 (25.8-45.2) µm (n = 50) in diameter. To identify the pathogen, fungal hyphae were scraped, and the fungal genome was extracted using a kit (BioTeke, Cat#DP2031). The internal transcribed spacer region (ITS) of the fungal genome was amplified with primers ITS1/ITS4, and the results of ITS sequencing were uploaded to the GenBank database with accession number OP984201. The phylogenetic tree was constructed using the neighbor-joining method with MEGA11 software. Phylogenetic analysis based on ITS showed that the fungus was grouped together with Rhizopus arrhizus (MT590591) and had high bootstrap support. Thus, the pathogen was identified as R. arrhizus. To verify Koch's postulates, 60 ml of a spore suspension (1×104 conidia/ml) was sprayed onto the surface of 12 healthy Lonicera plants, and the other 12 plants were sprayed with sterile water as a control. All plants were kept in the greenhouse at 25°C with 60% relative humidity. After 14 d, the infected plants showed symptoms similar to those of the original diseased plants. The strain was isolated again from the diseased leaves of artificially inoculated plants and verified as the original strain by sequencing. The results showed that R. arrhizus was the pathogen responsible for Lonicera leaf rot. Previous studies have shown that R. arrhizus causes garlic bulb rot (Zhang et al., 2022) and Jerusalem artichoke tuber rot (Yang et al., 2020). To our knowledge, this is the first report of R. arrhizus causing Lonicera leaf rot disease in China. Information regarding the identification of this fungus may be helpful for controlling the leaf rot disease.

7.
Plant Dis ; 107(5): 1463-1470, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36205689

RESUMO

Kurstakin is the latest discovered family of lipopeptides secreted by Bacillus spp. In this study, the effects of kurstakin on the direct antagonism, multicellularity, and disease control ability of Bacillus cereus AR156 were explored. An insertion mutation in the nonribosomal peptide synthase responsible for kurstakin synthesis led to a significant reduction of antagonistic ability of AR156 against the plant-pathogenic fungi Rhizoctonia solani, Ascochyta citrullina, Fusarium graminearum, and F. oxysporum f. sp. cubense. The loss of kurstakin synthesis ability significantly impaired the swarming motility of AR156 and reduced biofilm formation and amyloid protein accumulation. Although the loss of kurstakin synthesis ability did not reduce the competitiveness of AR156 under laboratory conditions, the colonization and environmental adaptability of the mutant was significantly weaker than that of wild-type AR156 on rice leaves. The cell surface of wild-type AR156 colonizing the leaf surface was covered by a thick biofilm matrix under a scanning electron microscope, but not the mutant. The colonization ability on rice roots and control efficacy against rice sheath blight disease of the mutant were also impaired. Thus, kurstakin participates in the control of plant diseases by B. cereus AR156 through directly inhibiting the growth of pathogenic fungi and improving long-term environmental adaptability and colonization of AR156 on the host surface by triggering multicellularity. This study explored the multiple functions of kurstakin in plant disease control by B. cereus.


Assuntos
Bacillus cereus , Oryza , Bacillus cereus/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia
8.
J Integr Plant Biol ; 65(4): 1077-1095, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36511124

RESUMO

Rice ARGONAUTE2 (OsAGO2) is a core component of the rice RNA-induced silencing complex (RISC), which is repressed by Magnaporthe oryzae (M. oryzae) infection. Whether and how OsAGO2-mediated gene silencing plays a role in rice blast resistance and which sRNAs participate in this process are unknown. Our results indicate that OsAGO2 is a key immune player that manipulates rice defense responses against blast disease. OsAGO2 associates with the 24-nt miR1875 and binds to the promoter region of HEXOKINASE1 (OsHXK1), which causes DNA methylation and leads to gene silencing. Our multiple genetic evidence showed that, without M. oryzae infection, OsAGO2/miR1875 RISC promoted OsHXK1 promoter DNA methylation and OsHXK1 silencing; after M. oryzae infection, the reduced OsAGO2/miR1875 led to a relatively activated OsHXK1 expression. OsHXK1 acts as a positive regulator of blast disease resistance that OsHXK1-OE rice exhibited enhanced resistance, whereas Cas9-Oshxk1 rice showed reduced resistance against M. oryzae infection. OsHXK1 may function through its sugar sensor activity as glucose induced defense-related gene expression and reactive oxygen species (ROS) accumulation in Nipponbare and OsHXK1-OE but not in Cas9-Oshxk1 rice. OsAGO2 itself is delicately regulated by OsPRMT5, which senses M. oryzae infection and attenuates OsAGO2-mediated gene silencing through OsAGO2 arginine methylation. Our study reveals an OsPRMT5-OsAGO2/miR1875-OsHXK1 regulatory module that fine tunes the rice defense response to blast disease.


Assuntos
Magnaporthe , Oryza , Magnaporthe/fisiologia , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética , Regiões Promotoras Genéticas , Doenças das Plantas/genética
9.
Mol Plant Microbe Interact ; 35(8): 659-671, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36043906

RESUMO

Bacillus spp. are known for their ability to control plant diseases; however, the mechanism of disease control by Bacillus spp. is still unclear. Previously, bacterial organic acids have been implicated in the process of disease suppression. We extracted the total organic acid from Bacillus cereus AR156 culture filtrate and identified oxalic acid (OA) as the programmed cell death-inducing factor. OA strongly suppressed the lesion caused by Botrytis cinerea without significant antagonism against the fungus. Low concentration of OA produced by Bacillus spp. inhibited cell death caused by high concentrations of OA in a concentration- and time-dependent manner. Pretreatment with a low concentration of OA led to higher accumulation of active oxygen-scavenging enzymes in tomato leaves and provoked the expression of defense-related genes. The activation of gene expression relied on the jasmonic acid (JA) signaling pathway but not the salicylic acid (SA) pathway. The disease suppression capacity of OA was confirmed on wild-type tomato and its SA accumulation-deficient line, while the control effect was diminished in JA synthesis-deficient mutant, suggesting that the OA-triggered resistance relied on JA and ethylene (ET) signaling transduction. OA secretion ability was widely distributed among the tested Bacillus strains and the final environmental OA concentration was under strict regulation by a pH-sensitive degradation mechanism. This study provides the first systematic analysis on the role of low-concentration OA secreted and maintained by Bacillus spp. in suppression of gray mold disease and determines the dependence of OA-mediated resistance on the JA/ET signaling pathway. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.


Assuntos
Bacillus , Solanum lycopersicum , Botrytis/fisiologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Ácido Oxálico , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo
10.
J Transl Med ; 20(1): 215, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562803

RESUMO

BACKGROUND: Acute kidney injury (AKI) is the most common and serious complication of sepsis, accompanied by high mortality and disease burden. The early prediction of AKI is critical for timely intervention and ultimately improves prognosis. This study aims to establish and validate predictive models based on novel machine learning (ML) algorithms for AKI in critically ill patients with sepsis. METHODS: Data of patients with sepsis were extracted from the Medical Information Mart for Intensive Care III (MIMIC- III) database. Feature selection was performed using a Boruta algorithm. ML algorithms such as logistic regression (LR), k-nearest neighbors (KNN), support vector machine (SVM), decision tree, random forest, Extreme Gradient Boosting (XGBoost), and artificial neural network (ANN) were applied for model construction by utilizing tenfold cross-validation. The performances of these models were assessed in terms of discrimination, calibration, and clinical application. Moreover, the discrimination of ML-based models was compared with those of Sequential Organ Failure Assessment (SOFA) and the customized Simplified Acute Physiology Score (SAPS) II model. RESULTS: A total of 3176 critically ill patients with sepsis were included for analysis, of which 2397 cases (75.5%) developed AKI during hospitalization. A total of 36 variables were selected for model construction. The models of LR, KNN, SVM, decision tree, random forest, ANN, XGBoost, SOFA and SAPS II score were established and obtained area under the receiver operating characteristic curves of 0.7365, 0.6637, 0.7353, 0.7492, 0.7787, 0.7547, 0.821, 0.6457 and 0.7015, respectively. The XGBoost model had the best predictive performance in terms of discrimination, calibration, and clinical application among all models. CONCLUSION: The ML models can be reliable tools for predicting AKI in septic patients. The XGBoost model has the best predictive performance, which can be used to assist clinicians in identifying high-risk patients and implementing early interventions to reduce mortality.


Assuntos
Injúria Renal Aguda , Sepse , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Estado Terminal , Feminino , Humanos , Modelos Logísticos , Aprendizado de Máquina , Masculino , Sepse/complicações , Sepse/diagnóstico
11.
J Surg Oncol ; 125(8): 1238-1250, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35174885

RESUMO

BACKGROUND: Increasing attention has been drawn the prognostic value of inflammatory indices for colorectal cancer (CRC). However, the prognostic value of the preoperative C-reactive protein to prealbumin ratio (CPAR) in CRC remains unclear. METHODS: A retrospective study was conducted with 794 patients who had CRC and underwent radical surgical resection. The predictive performance of the inflammatory indices was analyzed and compared using the area under the time-dependent receiver operating characteristic curve. A competing risk regression model and Cox proportional hazard model were used to analyze the effects of CPAR on disease-free survival (DFS) and overall survival (OS), respectively. RESULTS: Patients with high CPAR (>7.25) had poor survival outcome. The CPAR had the best predictive performance among all inflammatory indices, and was significantly associated with several characteristics of tumor invasion, including histological grade, tumor stage, and tumor size. Multivariate analysis showed that high CPAR was independently associated with poor DFS (subdistribution hazard ratio = 2.28, 95% confidence interval [CI]: 1.74-2.82) and OS (hazard ratio = 1.78, 95% CI: 1.60-1.96). CONCLUSION: Preoperative CPAR assessment could serve as an effective and reliable tool for prognostic prediction in patients with resectable CRC.


Assuntos
Proteína C-Reativa , Neoplasias Colorretais , Neoplasias Colorretais/patologia , Humanos , Pré-Albumina , Prognóstico , Estudos Retrospectivos
12.
Phytopathology ; 112(3): 608-619, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34445896

RESUMO

Circular RNAs (circRNAs) are a group of covalently closed RNAs, and their biological function is largely unknown. In this study, we focused on circRNAs that are generated from exon back-splicing (exonic circRNAs). The linear RNA counterparts encode functional proteins so that we can compare and investigate the relationship between circular and linear RNAs. We compared circRNA expression profiles between untreated and Pseudomonas syringae-infected Arabidopsis and identified and experimentally validated differentially expressed exonic circRNAs by multiple approaches. We found that exonic circRNAs are preferentially enriched in biological processes that associate with biotic and abiotic stress responses. We discovered that circR194 and circR4022 are involved in plant response against P. syringae infection, whereas circR11208 is involved in response against Botrytis cinerea infection. Intriguingly, our results indicate that these exonic circRNAs function synergistically with their corresponding linear RNAs. Furthermore, circR4022 and circR11208 also play substantial roles in Arabidopsis tolerance to salt stress. This study extends our understanding of the molecular functions of plant circRNAs.


Assuntos
Arabidopsis , RNA Circular , Arabidopsis/genética , Éxons/genética , Imunidade , Doenças das Plantas , RNA/genética , RNA Circular/genética
13.
Mediators Inflamm ; 2022: 4915887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204660

RESUMO

Background: As a novel inflammatory index, the ratio of red cell distribution width (RDW) to platelet count (RPR) may have prognostic value in some critical illnesses. However, studies on the prognostic influence of RPR in patients with sepsis are few. This study is aimed at investigating the association between RPR levels and 28-day mortality in patients with sepsis. Methods: Data of patients with sepsis were obtained from the Medical Information Mart for Intensive Care III database. The best cut-off value was calculated by establishing the receiver operating characteristic curve (ROC), and the predictive ability of different indicators was compared through the area under the curve (AUC). The association between RPR levels and 28-day mortality was assessed using the Cox proportional hazards model. Restrictive cubic spline analysis was applied to the multivariable Cox model to investigate the nonlinear relationship between RPR and 28-day mortality. Results: A total of 3367 patients with sepsis were included in the study. A nonlinear relationship was observed between RPR and 28-day mortality, showing a trend of a first rapid increase and a gradual increase. For the prediction of mortality, the best cut-off value for RPR was 0.109, with an AUC of 0.728 (95% confidence interval [CI]: 0.709-0.747). The predictive capability of RPR was superior to those of RDW, platelet, SOFA score, and SAPS II score. After adjusting for various confounding factors, high RPR was significantly associated with increased mortality with adjusted hazard ratios of 1.210 (95% CI: 1.045-1.400) for categorical variables and 2.826 (95% CI: 2.025-3.944) for continuous variables. Conclusion: Elevated RPR level is significantly correlated with a high risk of 28-day mortality in patients with sepsis and can be a new predictor of patient prognosis.


Assuntos
Índices de Eritrócitos , Sepse , Humanos , Unidades de Terapia Intensiva , Contagem de Plaquetas , Prognóstico , Curva ROC , Estudos Retrospectivos
14.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012208

RESUMO

Plant defense and growth rely on multiple transcriptional factors (TFs). Repression of shoot growth (RSG) is a TF belonging to a bZIP family in tobacco, known to be involved in plant gibberellin feedback regulation by inducing the expression of key genes. The tobacco calcium-dependent protein kinase CDPK1 was reported to interact with RSG and manipulate its intracellular localization by phosphorylating Ser-114 of RSG previously. Here, we identified tobacco mitogen-activated protein kinase 3 (NtMPK3) as an RSG-interacting protein kinase. Moreover, the mutation of the predicted MAPK-associated phosphorylation site of RSG (Thr-30, Ser-74, and Thr-135) significantly altered the intracellular localization of the NtMPK3-RSG interaction complex. Nuclear transport of RSG and its amino acid mutants (T30A and S74A) were observed after being treated with plant defense elicitor peptide flg22 within 5 min, and the two mutated RSG swiftly re-localized in tobacco cytoplasm within 30 min. In addition, triple-point mutation of RSG (T30A/S74A/T135A) mimics constant unphosphorylated status, and is predominantly localized in tobacco cytoplasm. RSG (T30A/S74A/T135A) showed no re-localization effect under the treatments of flg22, B. cereus AR156, or GA3, and over-expression of this mutant in tobacco resulted in lower expression levels of downstream gene GA20ox1. Our results suggest that MAPK-associated phosphorylation sites of RSG regulate its localization in tobacco, and that constant unphosphorylation of RSG in Thr-30, Ser-74, and Thr-135 keeps RSG predominantly localized in cytoplasm.


Assuntos
Nicotiana , Células Vegetais , Giberelinas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
15.
Plant J ; 102(5): 948-964, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31923320

RESUMO

Plant small RNAs (sRNAs) play significant roles in regulating various developmental processes and hormone signalling pathways involved in plant responses to a wide range of biotic and abiotic stresses. However, the functions of sRNAs in response to rice sheath blight remain unclear. We screened rice (Oryza sativa) sRNA expression patterns against Rhizoctonia solani and found that Tourist-miniature inverted-repeat transposable element (MITE)-derived small interfering RNA (siRNA) (here referred to as siR109944) expression was clearly suppressed upon R. solani infection. One potential target of siR109944 is the F-Box domain and LRR-containing protein 55 (FBL55), which encode the transport inhibitor response 1 (TIR1)-like protein. We found that rice had significantly enhanced susceptibility when siR109944 was overexpressed, while FBL55 OE plants showed resistance to R. solani challenge. Additionally, multiple agronomic traits of rice, including root length and flag leaf inclination, were affected by siR109944 expression. Auxin metabolism-related and signalling pathway-related genes were differentially expressed in the siR109944 OE and FBL55 OE plants. Importantly, pre-treatment with auxin enhanced sheath blight resistance by affecting endogenous auxin homeostasis in rice. Furthermore, transgenic Arabidopsis overexpressing siR109944 exhibited early flowering, increased tiller numbers, and increased susceptibility to R. solani. Our results demonstrate that siR109944 has a conserved function in interfering with plant immunity, growth, and development by affecting auxin homeostasis in planta. Thus, siR109944 provides a genetic target for plant breeding in the future. Furthermore, exogenous application of indole-3-acetic acid (IAA) or auxin analogues might effectively protect field crops against diseases.


Assuntos
Oryza/metabolismo , Homeostase/genética , Homeostase/fisiologia , Oryza/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , RNA Interferente Pequeno/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
16.
Mol Plant Microbe Interact ; 34(12): 1423-1432, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34515495

RESUMO

Alternative splicing of pre-mRNAs is an important gene regulatory mechanism shaping the transcriptome. AtMC1 is an Arabidopsis thaliana type I metacaspase that positively regulates the hypersensitive response. Here, we found that AtMC1 is involved in the regulation of plant immunity to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and is physically associated with Sm-like4 (LSM4), which is involved in pre-mRNA splicing. AtMC1 and LSM4 protein levels both increased with their coexpression as compared with their separate expression in vivo. Like AtMC1, LSM4 negatively regulates plant immunity to P. syringae pv. tomato DC3000 infection. By RNA sequencing, AtMC1 was shown to modulate the splicing of many pre-mRNAs, including 4CL3, which is a negative regulator of plant immunity. Thus, AtMC1 plays a regulatory role in pre-mRNA splicing, which might contribute to AtMC1-mediated plant immunity.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae/metabolismo , Precursores de RNA
17.
Mol Plant Microbe Interact ; 34(12): 1458-1460, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34533971

RESUMO

Agrobacterium salinitolerans DG3-1 is an endophytic bacterium isolated from cotton root tissue. Our previous work has shown that it can inhibit the growth of Fusarium and Verticillium wilt pathogens as well as increase the chlorophyll content of cotton leaves. Here, we reported the complete genome sequence of strain DG3-1, which was analyzed by sequence reads generated from Nanopore PromethION and Illumina NovaSeq PE150 platforms. This genome sequence could be used to clarify the possible mechanism of DG3-1 at the gene level.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fusarium , Verticillium , Agrobacterium , Gossypium , Doenças das Plantas
18.
Plant Biotechnol J ; 19(9): 1756-1768, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33774895

RESUMO

Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen's RNA uptake efficiency.


Assuntos
Inativação Gênica , RNA de Cadeia Dupla , Ascomicetos , Botrytis , Colletotrichum , Doenças das Plantas , Interferência de RNA , RNA de Cadeia Dupla/genética , Rhizoctonia
19.
Plant Biotechnol J ; 19(4): 757-766, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33108698

RESUMO

Huanglongbing (HLB) is the most devastating citrus disease in the world. Almost all commercial citrus varieties are susceptible to the causal bacterium, Candidatus Liberibacter asiaticus (CLas), which is transmitted by the Asian citrus psyllid (ACP). Currently, there are no effective management strategies to control HLB. HLB-tolerant traits have been reported in some citrus relatives and citrus hybrids, which offer a direct pathway for discovering natural defence regulators to combat HLB. Through comparative analysis of small RNA profiles and target gene expression between an HLB-tolerant citrus hybrid (Poncirus trifoliata × Citrus reticulata) and a susceptible citrus variety, we identified a panel of candidate defence regulators for HLB-tolerance. These regulators display similar expression patterns in another HLB-tolerant citrus relative, with a distinct genetic and geographic background, the Sydney hybrid (Microcitrus virgata). Because the functional validation of candidate regulators in tree crops is always challenging, we developed a novel rapid functional screening method, using a C. Liberibacter solanacearum (CLso)/potato psyllid/Nicotiana benthamiana interaction system to mimic the natural transmission and infection circuit of the HLB complex. When combined with efficient virus-induced gene silencing in N. benthamiana, this innovative and cost-effective screening method allows for rapid identification and functional characterization of regulators involved in plant immune responses against HLB, such as the positive regulator BRCA1-Associated Protein, and the negative regulator Vascular Associated Death Protein.


Assuntos
Citrus , Hemípteros , Poncirus , Rhizobiaceae , Animais , Citrus/genética , Doenças das Plantas
20.
Plant J ; 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29775494

RESUMO

Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more reactive oxygen species accumulation and callose deposition, and upregulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases, such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA