Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 24, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321393

RESUMO

BACKGROUND: Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS: The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1ß of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1ß, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS: The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1ß, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION: Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Nanosferas , Selênio , Humanos , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Selênio/metabolismo , Selênio/farmacologia , Selênio/uso terapêutico , Dióxido de Silício/metabolismo , Dióxido de Silício/farmacologia , Dióxido de Silício/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Peroxidação de Lipídeos , Porosidade , Fator de Necrose Tumoral alfa/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Dissulfeto de Glutationa/uso terapêutico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Proteínas de Junções Íntimas/metabolismo
2.
J Transl Med ; 22(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166990

RESUMO

BACKGROUND: Diabetes mellitus (DM) is a progressive disease that involves multiple organs due to increased blood glucose, and diabetic retinopathy (DR) is the main complication of DM in the eyes and causes irreversible vision loss. In the pathogenesis of diabetic vascular disease, oxidative stress caused by hyperglycemia plays an important role in Müller cell impairment. In recent years, AdipoRon, an adiponectin analog that demonstrated important physiological functions in obesity, diabetes, inflammation, and cardiovascular diseases, demonstrated cellular protection from apoptosis and reduced inflammatory damage through a receptor-dependent mechanism. Here, we investigated how AdipoRon reduced oxidative stress and apoptosis in Müller glia in a high glucose environment. RESULTS: By binding to adiponectin receptor 1 on Müller glia, AdipoRon activated 5' adenosine monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase phosphorylation downstream, thereby alleviating oxidative stress and eventual apoptosis of cells and tissues. Transcriptome sequencing revealed that AdipoRon promoted the synthesis and expression of early growth response factor 4 (EGR4) and inhibited the cellular protective effects of AdipoRon in a high-glucose environment by reducing the expression of EGR4. This indicated that AdipoRon played a protective role through the EGR4 and classical AMPK pathways. CONCLUSIONS: This provides a new target for the early treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Proteínas Quinases Ativadas por AMP/metabolismo , Retinopatia Diabética/tratamento farmacológico , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Glucose , Fosforilação , Receptores de Adiponectina/metabolismo , Animais , Camundongos
3.
J Proteome Res ; 22(7): 2293-2306, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37329324

RESUMO

As a vision-threatening complication of diabetes mellitus (DM), proliferative diabetic retinopathy (PDR) is associated with sustained metabolic disorders. Herein, we collected the vitreous cavity fluid of 49 patients with PDR and 23 control subjects without DM for metabolomics and lipidomics analyses. Multivariate statistical methods were performed to explore relationships between samples. For each group of metabolites, gene set variation analysis scores were generated, and we constructed a lipid network by using weighted gene co-expression network analysis. The association between lipid co-expression modules and metabolite set scores was investigated using the two-way orthogonal partial least squares (O2PLS) model. A total of 390 lipids and 314 metabolites were identified. Multivariate statistical analysis revealed significant vitreous metabolic and lipid differences between PDR and controls. Pathway analysis showed that 8 metabolic processes might be associated with the development of PDR, and 14 lipid species were found to be altered in PDR patients. Combining metabolomics and lipidomics, we identified fatty acid desaturase 2 (FADS2) as an important potential contributor to the pathogenesis of PDR. Collectively, this study integrates vitreous metabolomics and lipidomics to comprehensively unravel metabolic dysregulation and identifies genetic variants associated with altered lipid species in the mechanistic pathways for PDR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Lipidômica , Corpo Vítreo/metabolismo , Metabolômica , Lipídeos
4.
Microb Pathog ; 174: 105924, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36473667

RESUMO

Piglet diarrhea caused by the porcine epidemic diarrhea virus (PEDV) is a common problem on pig farms in China associated with high morbidity and mortality rates. In this study, three PEDV isolates were successfully detected after the fourth blind passage in Vero cells. The samples were obtained from infected piglet farms in Jilin (Changchun), and Shandong (Qingdao) Provinces of China and were designated as CH/CC-1/2018, CH/CC-2/2018, and CH/QD/2018. According to the analysis of the complete S protein gene sequence, the CH/CC-1/2018 and CH/CC-2/2018 were allocated to the G2b branch, while CH/QD/2018 was located in the G1a interval and was closer to the vaccine strain CV777. Successful detection and identification of the isolated strains were carried out using electron microscopy and indirect immunofluorescence. Meanwhile, animal challenge experiments and viral RNA copies determination were used to compare the pathogenicity. The results showed that CH/CC-1/2018 in Changchun was more pathogenic than CH/QD/2018 in Qingdao. In conclusion, the discovery of these new strains is conducive to the development of vaccines to prevent the pandemic of PEDV, especially that the CH/CC-1/2018, and CH/CC-2/2018 were not related to the classical vaccine strain CV777.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Chlorocebus aethiops , Animais , Suínos , Células Vero , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Virulência , Filogenia , Diarreia/veterinária , China/epidemiologia
5.
Graefes Arch Clin Exp Ophthalmol ; 261(1): 49-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35838805

RESUMO

PURPOSE: To investigate the predictive role of serum angiopoietin-1 and angiopoietin-2 (Ang-1/Ang-2) in evaluating the severity of diabetic retinopathy (DR). METHODS: A total of 101 outpatients with type 2 diabetes mellitus (T2DM) were recruited and were further divided into the following five groups: T2DM without DR (non-DR), mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR and proliferative DR (PDR) in accordance with the International Clinical Diabetic Retinopathy Guidelines. Furthermore, 101 serum samples were included in the further analysis using enzyme-linked immunosorbent assays. A receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic value of each index. RESULTS: The expression of Ang-1 in the PDR group was significantly lower than that in the non-DR group, while Ang-2 showed an opposite upward trend (p < 0.05). The Ang-1/Ang-2 ratio of the non-DR group was significantly lower than that of the moderate NPDR, severe NPDR and PDR (p < 0.05, p < 0.01 and p < 0.01, respectively). Differences in the Ang-1/Ang-2 ratio were observed earlier than those in the individual Ang-1 and Ang-2 measurements. The maximal Youden index was 0.512 with a calculated area under the curve (AUC) value of 0.734 (p < 0.01). CONCLUSIONS: The Ang-1/Ang-2 ratio was helpful in assessing the severity of DR and may provide potential clinical benefits as a biomarker and early warning signs for DR diagnosis.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Angiopoietina-1 , Biomarcadores , Curva ROC
6.
Arch Biochem Biophys ; 725: 109283, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35577071

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is the most common retinal microvascular disease caused by diabetes. Previous studies indicated that Pentraxin 3 (PTX3), an acute phase reactant, was closely related to the development of DR. But the exact effect of PTX3 in diabetic retinopathy needs more investigations. METHODS: Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) analysis and western blot (WB) were used to detect the expression of PTX3 in vitro. The Ki67 immunofluorescent staining, scratch-wound migration assay, and tube formation experiments were performed to detect the effect of PTX3 knockdown and overexpression on the fibroblast growth factor (FGF)-induced proliferation, migration and tube-forming ability of human retinal microvascular endothelial cells (HRMECs). The phosphorylation levels of extracellular regulated protein kinases (ERK) and fibroblast growth factor receptor (FGFR) in HRMECs were detected by WB. RESULTS: In vitro, the mRNA and protein expressions of PTX3 in the high-concentration glucose condition group were upregulated compared with the normal group (p < 0.05). The proliferation, migration and tube-forming abilities of HRMECs exposed to high-concentration glucose were enhanced (p < 0.01, p < 0.01, p < 0.05 respectively), and the phosphorylation of FGFR and ERK1/2 were increased (p < 0.01, p < 0.05 respectively) compared with the normal condition group. Compared with the high glucose condition group, the proliferation, migration and tube-forming abilities of HRMECs in the high glucose + PTX3 siRNA condition group were further strengthened (p < 0.001, p < 0.0001, p < 0.05 respectively), and the phosphorylation of FGFR and ERK1/2 were increased (p < 0.001, p < 0.01 respectively). Compared with the high glucose condition group, the proliferation, migration and tube-forming abilities of HRMECs in the high glucose + PTX3 overexpression condition group were compromised (p < 0.001, p < 0.05, p < 0.01 respectively), and the phosphorylation of FGFR and ERK1/2 were inhibited (p < 0.001, p < 0.0001 respectively). Neither the scramble siRNA condition group nor the blank plasmid condition group showed significant difference on the proliferation, migration and tube-forming abilities of HRMECs compared with the high glucose condition group (p > 0.05). CONCLUSIONS: The upregulated expression of PTX3 may play a protective role on pathological angiogenesis in DR. PTX3 may serve as a new target for the treatment of DR.


Assuntos
Proteína C-Reativa , Retinopatia Diabética , MicroRNAs , Componente Amiloide P Sérico , Proteína C-Reativa/biossíntese , Proteína C-Reativa/genética , Proliferação de Células , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Componente Amiloide P Sérico/biossíntese , Componente Amiloide P Sérico/genética , Regulação para Cima
7.
Environ Microbiol ; 23(8): 4823-4837, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34296514

RESUMO

FtsZ is a tubulin-like GTPase that polymerizes to initiate the process of cell division in bacteria. Heterocysts are terminally differentiated cells of filamentous cyanobacteria that have lost the capacity for cell division and in which the ftsZ gene is downregulated. However, mechanisms of FtsZ regulation during heterocyst differentiation have been scarcely investigated. The patD gene is NtcA dependent and involved in the optimization of heterocyst frequency in Anabaena sp. PCC 7120. Here, we report that the inactivation of patD caused the formation of multiple FtsZ-rings in vegetative cells, cell enlargement, and the retention of peptidoglycan synthesis activity in heterocysts, whereas its ectopic expression resulted in aberrant FtsZ polymerization and cell division. PatD interacted with FtsZ, increased FtsZ precipitation in sedimentation assays, and promoted the formation of thick straight FtsZ bundles that differ from the toroidal aggregates formed by FtsZ alone. These results suggest that in the differentiating heterocysts, PatD interferes with the assembly of FtsZ. We propose that in Anabaena FtsZ is a bifunctional protein involved in both vegetative cell division and regulation of heterocyst differentiation. In the differentiating cells PatD-FtsZ interactions appear to set an FtsZ activity that is insufficient for cell division but optimal to foster differentiation.


Assuntos
Anabaena , Cianobactérias , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
8.
Ophthalmology ; 128(1): 39-47, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652206

RESUMO

PURPOSE: To evaluate the safety of pupillary dilation in primary angle-closure suspects (PACS) with concurrent visually significant cataract (VSC), to identify risk factors associated with elevated intraocular pressure (IOP), and to describe changes in anterior segment anatomy after pupillary dilation. DESIGN: Prospective study. PARTICIPANTS: Patients with PACS and VSC and no prior laser or intraocular surgery were recruited. Visually significant cataract was defined as best-corrected visual acuity ≤ 20/40 due to cataract. METHODS: Subjects' eyes were dilated with 0.5% tropicamide and 0.5% phenylephrine hydrochloride. A standardized eye examination, biometry, and swept-source OCT (SS-OCT) were performed before dilation. Intraocular pressure and SS-OCT were repeated 1, 4, and 6 hours postdilation (PDH1, PDH4, and PDH6, respectively). All parameters were compared between time points before and after dilation using paired t test. Linear regression models were used to determine the risk factors associated with postdilation IOP changes. MAIN OUTCOME MEASURES: Change in IOP and SS-OCT parameters from baseline. RESULTS: Seventy-eight eyes from 78 patients were included, with 78, 66, and 12 patients completing the study at PDH1, PDH4, and PDH6, respectively. Mean IOP increased from 14.8 ± 2.6 mmHg at baseline to 15.5 ± 3.5 mmHg at PDH1 (P = 0.03) and decreased to 14.9 ± 3.1 mmHg at PDH4 (P = 0.09). Four patients (5.13%) and 3 patients (3.85%) had an increase in IOP ≥ 5 mmHg at PDH1 and PDH4, respectively. Two patients (2.56%) and 1 patient (1.28%) had an increase in IOP ≥ 8 mmHg at PDH1 and PDH4, respectively. None developed acute primary angle-closure during the observation period. Almost all anterior chamber parameters showed a significant increase after dilation at PDH1 and PDH4, except lens vault and iris volume, which decreased at PDH1 and PDH4 from baseline. Increase in anterior chamber depth was negatively associated with the level of IOP elevation after dilation (P < 0.01). CONCLUSIONS: Dilation of patients' eyes with PACS and VSC in this cohort appears to have a low risk for IOP spike. This may be associated with relaxation of the ciliary muscle leading to posterior displacement of the lens-iris diaphragm and deepening of the anterior chamber.


Assuntos
Câmara Anterior/diagnóstico por imagem , Dilatação/métodos , Glaucoma de Ângulo Fechado/fisiopatologia , Pressão Intraocular/fisiologia , Idoso , Idoso de 80 Anos ou mais , Biometria , Feminino , Glaucoma de Ângulo Fechado/diagnóstico , Glaucoma de Ângulo Fechado/terapia , Gonioscopia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tomografia de Coerência Óptica
9.
FASEB J ; 33(12): 13346-13357, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545913

RESUMO

Endothelial glycocalyx plays a significant role in the development and progression of diabetic complications. Endomucin (EMCN) is an anti-inflammatory membrane glycoprotein that is mainly expressed in venous and capillary endothelial cells. However, the function of EMCN in diabetic retinopathy (DR) progression is still completely unknown. We first investigated the change of EMCN expression in the retina and human retinal microvascular endothelial cells. We then overexpressed EMCN in the retina with adeno-associated virus and induced DR with streptozotocin (STZ). We analyzed EMCN's effect on the integrity of endothelial glycocalyx under conditions of DR. Furthermore, we investigated EMCN's protective effect against inflammation and blood-retinal barrier (BRB) destruction. We found that EMCN is specifically expressed in retinal endothelial cells and that its levels are decreased during hyperglycemia in vitro and in vivo. Overexpression of EMCN can restore the retinal endothelial glycocalyx of STZ-induced diabetic rats. Furthermore, EMCN overexpression can decrease leukocyte-endothelial adhesion to ameliorate inflammation and stabilize the BRB to inhibit vessel leakage in rats with DR. EMCN may protect patients with diabetes from retinal vascular degeneration by restoring the endothelial glycocalyx. EMCN may thus represent a novel therapeutic strategy for DR because it targets endothelial glycocalyx degradation associated with this disease.-Niu, T., Zhao, M., Jiang, Y., Xing, X., Shi, X., Cheng, L., Jin, H., Liu, K. Endomucin restores depleted endothelial glycocalyx in the retinas of streptozotocin-induced diabetic rats.


Assuntos
Diabetes Mellitus Experimental/complicações , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Inflamação/prevenção & controle , Retina/metabolismo , Sialomucinas/metabolismo , Animais , Adesão Celular , Permeabilidade da Membrana Celular , Endotélio Vascular/patologia , Glicocálix/patologia , Hiperglicemia/fisiopatologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Retina/patologia , Sialomucinas/genética
10.
J Bacteriol ; 201(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31405917

RESUMO

In the filamentous multicellular cyanobacterium Anabaena sp. strain PCC 7120, 5 to 10% of the cells differentiate into heterocysts, which are specialized in N2 fixation. Heterocysts and vegetative cells are mutually dependent for filament growth through nutrient exchange. Thus, the heterocyst frequency should be optimized to maintain the cellular carbon and nitrogen (C/N) balance for filament fitness in the environment. Here, we report the identification of patD, whose expression is directly activated in developing cells by the transcription factor NtcA. The inactivation of patD increases heterocyst frequency and promotes the upregulation of the positive regulator of heterocyst development hetR, whereas its overexpression decreases the heterocyst frequency. The change in heterocyst frequency resulting from the inactivation of patD leads to the reduction in competitiveness of the filaments under combined-nitrogen-depleted conditions. These results indicate that patD regulates heterocyst frequency in Anabaena sp. PCC 7120, ensuring its optimal filament growth.IMPORTANCE Microorganisms have evolved various strategies in order to adapt to the environment and compete with other organisms. Heterocyst differentiation is a prokaryotic model for studying complex cellular regulation. The NtcA-regulated gene patD controls the ratio of heterocysts relative to vegetative cells on the filaments of Anabaena sp. strain PCC 7120. Such a regulation provides a mechanism through which carbon fixation by vegetative cells and nitrogen fixation by heterocysts are properly balanced to ensure optimal growth and keep a competitive edge for long-term survival.


Assuntos
Anabaena/genética , Proteínas de Bactérias/genética , Anabaena/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Fatores de Transcrição/genética , Regulação para Cima/genética
11.
Biochem Biophys Res Commun ; 512(3): 552-557, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914198

RESUMO

PURPOSE: Angiogenesis is an essential part of the diabetes retinopathy (DR) process, and Zinc Finger RNA Binding Protein (ZFR) is important for vascularization to occur. However, the function and regulation of ZFR in DR development are not well understood. We hypothesized that high glucose condition could result in ZFR up-regulation in human retinal microvascular endothelial cells (HRMECs), thus contributing to disease progression, and O-glycosylation may be participated in this regulation. METHODS: Retinas were harvested from streptozotocin (STZ)-induced rat model of diabetes. Human umbilical vein endothelial cells (HUVECs) and HRMECs cultured in high glucose concentration, and retinal tissues were detected for ZFR expression. We examined the role of ZFR on vasculogenic processes including proliferation and migration in the cell model of DR. The effect of O-glycosylation modification on ZFR was further assessed in HRMECs. RESULTS: Expression of ZFR was up-regulated in high glucose condition both in vitro and in vivo. ZFR induced proliferation and migration of HRMECs. Inhibition of O-glycosylation modification attenuated the expression of ZFR. CONCLUSION: ZFR plays an important role in the pathogenesis of DR, and its mechanism may through the modification of O-glycosylation. Our research suggests that ZFR may be used as a potential prognostic marker or potential therapeutic target for DR.


Assuntos
Movimento Celular , Retinopatia Diabética/metabolismo , Hiperglicemia/metabolismo , Proteínas de Ligação a RNA/metabolismo , Retina/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Glicosilação , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Neovascularização Patológica/metabolismo , Ratos Sprague-Dawley , Retina/citologia
12.
J Neuroinflammation ; 16(1): 278, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31883532

RESUMO

BACKGROUND: Uveitis is a potentially sight-threatening form of ocular inflammation that affects the uvea in the wall of the eye. Currently available treatments for uveitis have exhibited profound adverse side effects. However, KS23 is a novel 23-amino-acid anti-inflammatory peptide derived from adiponectin that may have the capability to function as a safe alternative to these existing treatment options. We, therefore, evaluated the preventive effect of KS23 in experimental autoimmune uveitis (EAU). METHODS: EAU was induced in mice via immunization with the peptide interphotoreceptor retinoid binding protein 161-180 (IRBP161-180). KS23 was then administered every 2 days via intraperitoneal injection to induce protection against EAU. Clinical and histopathological scores were employed to evaluate the disease progression. Inflammatory cytokines were also quantified using ELISA, and the expression levels of specific chemokines and chemokine receptors were assessed via qRT-PCR. In addition, the proportions of Th1 and Th17 cells were detected via flow cytometry, and the expression levels of specific proteins were quantified from the retina of mice using western blot analysis, to elucidate the specific mechanism of action employed by KS23 to suppress the inflammation associated with EAU. RESULTS: KS23 was found to significantly improve EAU-associated histopathological scores, while decreasing the expression of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-6, and IL-17A), chemokines (LARC, RANTES, MIG, IP-10), and chemokine receptors (CCR6 and CXCR3). The proportions of Th1 and Th17 cells were also suppressed following intraperitoneal injection with KS23. The anti-inflammatory mechanism employed by KS23 was determined to be associated with the activation of AMPK and subsequent inhibition of NF-κB. CONCLUSIONS: KS23 decreased the proportions of Th1 and Th17 cells to effectively ameliorate the progression of EAU. It may, therefore, serve as a promising potential therapeutic agent for uveitis.


Assuntos
Adiponectina/análogos & derivados , Adiponectina/farmacologia , Anti-Inflamatórios/farmacologia , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Uveíte/imunologia , Animais , Modelos Animais de Doenças , Regulação para Baixo , Inflamação/imunologia , Inflamação/patologia , Camundongos , Peptídeos/farmacologia , Retina/imunologia , Retina/patologia , Células Th1/imunologia , Células Th17/imunologia , Uveíte/patologia
13.
Gynecol Endocrinol ; 34(8): 675-679, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29334801

RESUMO

Recurrent spontaneous abortion (RSA) is a common health problem that affects about 5% of fertile women, when it occurs for unknown reasons, it is called unexplained recurrent spontaneous abortion (URSA). Traditional Chinese medicine, such as Bu-Shen-Yi-Qi formula which consists of Dangshen, Tusizi, Baizhu, Baishuo, Duzhong, Sangjisheng, Sugeng, and Tiaohuangqin, has played an invaluable role in the treatment of RSA since ancient times. However, the mechanism of how it takes effect is still not clear. To identify Bu-Shen-Yi-Qi formula could modulate immune condition at maternal-fetal interface via its effect on trophoblasts, HTR-8 of different treatment were co-cultured with peripheral or decidual natural killer (NK) cells, and the receptors such as NKP30 and NKP46 expression on NK cells were measured by flow cytometry (FCM). In this study, we found that herb medium could increase the IDO expression at appropriate concentrations. As an inhibitor of IDO, 1-MT could impair the inhibitory function of trophoblasts on NK cells. Furthermore, Bu-Shen-Yi-Qi formula could enhance the inhibitory function of trophoblasts on NK cells. In conclusion, Bu-Shen-Yi-Qi formula can inhibit NK cytotoxicity by up-regulating IDO expression in trophoblasts and play a role in the treatment of URSA patients.


Assuntos
Aborto Habitual/tratamento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Medicina Tradicional Chinesa , Trofoblastos/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Humanos , Gravidez , Trofoblastos/enzimologia
14.
Biochem Biophys Res Commun ; 484(1): 79-84, 2017 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-28104396

RESUMO

Intracellular adhesion molecule 1 (ICAM-1) is an important inflammatory factor that causes retinal damage during diabetic retinopathy. Hyperglycaemia can increase ICAM-1 expression in endothelial cells and the ICAM-1 promoter is responsive to the transcription factor specificity protein 1 (Sp1). O-GlcNAc modification is driven by the glucose concentration and has a profound effect on Sp1 activity. In this study, we investigated the underlying mechanism through which hyperglycaemia triggers ICAM-1 expression, which is mediated by O-GlcNAc modification of Sp1 in human umbilical vein endothelial cells (HUVECs) and rat retinal capillary endothelial cells (RRCECs). We showed that hyperglycaemia (30 mM) increased ICAM-1 expression compared to control conditions (5 mM). The addition of an OGT inhibitor decreased ICAM-1 expression and addition of an OGA inhibitor enhanced ICAM-1 expression. Furthermore, cells transduced with siSp1 exhibited dramatically decreased ICAM-1 expression. These results proved that the up-regulation of ICAM-1 with hyperglycaemia is mediated by O-GlcNAc modification of Sp1. It helps to explain the mechanism of ICAM-1 processing in HUVECs and RRCECs. Understanding how this inflammatory factor is modulated during diabetic retinopathy will ultimately help to design novel therapeutics to treat this condition.


Assuntos
Acetilglucosamina/metabolismo , Hiperglicemia/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Fator de Transcrição Sp1/metabolismo , Regulação para Cima , Acilação , Animais , Ensaio de Imunoadsorção Enzimática , Células Endoteliais da Veia Umbilical Humana , Humanos , Ratos
15.
Nano Lett ; 15(5): 3181-8, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25906248

RESUMO

An atomic-scale understanding of gas adsorption mechanisms on metal-porphyrins or metal-phthalocyanines is essential for their practical application in biological processes, gas sensing, and catalysis. Intensive research efforts have been devoted to the study of coordinative bonding with relatively active small molecules such as CO, NO, NH3, O2, and H2. However, the binding of single nitrogen atoms has never been addressed, which is both of fundamental interest and indeed essential for revealing the elementary chemical binding mechanism in nitrogen reduction processes. Here, we present a simple model system to investigate, at the single-molecule level, the binding of activated nitrogen species on the single Mn atom contained within the manganese phthalocyanine (MnPc) molecule supported on an inert graphite surface. Through the combination of in situ low-temperature scanning tunneling microscopy, scanning tunneling spectroscopy, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations, the active site and the binding configuration between the activated nitrogen species (neutral nitrogen atom) and the Mn center of MnPc are investigated at the atomic scale.

16.
Acta Pharmacol Sin ; 36(3): 353-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619392

RESUMO

AIM: The phosphorylation of histone H2AX, a novel tumor suppressor protein, is involved in regulation of cancer cell apoptosis. The aim of this study was to examine whether H2AX phosphorylation was required for resveratrol-induced apoptosis of human chronic myelogenous leukemia (CML) cells in vitro. METHODS: K562 cells were tested. Cell apoptosis was analyzed using flow cytometry, and the phosphorylation of H2AX and other signaling proteins was examined with Western blotting. To analyze the signaling pathways, the cells were transfected with lentiviral vectors encoding H2AX-wt or specific siRNAs. RESULTS: Treatment of K562 cells with resveratrol (20-100 µmol/L) induced apoptosis and phosphorylation of H2AX at Ser139 in time- and dose-dependent manners, but reduced phosphorylation of histone H3 at Ser10. Resveratrol treatment activated two MAPK family members p38 and JNK, and blocked the activation of another MAPK family member ERK. Pretreatment with the p38 inhibitor SB202190 or the JNK inhibitor SP600125 dose-dependently reduced resveratrol-induced phosphorylation of H2AX, which were also observed when the cells were transfected with p38- or JNK-specific siRNAs. Overexpression of H2AX in K562 cells markedly increased resveratrol-induced apoptosis, whereas overexpression of H2AX-139m (Ser139 was mutated to block phosphorylation) inhibited resveratrol-induced apoptosis. K562 cells transfected with H2AX-specific siRNAs were resistant to resveratrol-induced apoptosis. CONCLUSION: H2AX phosphorylation at Ser139 in human CML cells, which is regulated by p38 and JNK, is essential for resveratrol-induced apoptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Histonas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Estilbenos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Relação Dose-Resposta a Droga , Histonas/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
17.
Zhonghua Nan Ke Xue ; 21(12): 1098-101, 2015 Dec.
Artigo em Zh | MEDLINE | ID: mdl-26817302

RESUMO

OBJECTIVE: To assess the efficacy and safety of Saw Palmetto Extract Capsules in the treatment of benign prostatic hyperplasia (BPH). METHODS: We conducted a multi-centered open clinical study on 165 BPH patients treated with Saw Palmetto Extract Capsules at a dose of 160 mg qd for 12 weeks. At the baseline and after 6 and 12 weeks of medication, we compared the International Prostate Symptom Scores (IPSS), prostate volume, postvoid residual urine volume, urinary flow rate, quality of life scores (QOL), and adverse events between the two groups of patients. RESULTS: Compared with the baseline, both IPSS and QOL were improved after 6 weeks of medication, and at 12 weeks, significant improvement was found in IPSS, QOL, urinary flow rate, and postvoid residual urine. Mild stomachache occurred in 1 case, which necessitated no treatment. CONCLUSION: Saw Palmetto Extract Capsules were safe and effective for the treatment of BPH.


Assuntos
Extratos Vegetais/uso terapêutico , Hiperplasia Prostática/tratamento farmacológico , Cápsulas , Humanos , Masculino , Extratos Vegetais/efeitos adversos , Qualidade de Vida , Serenoa
18.
Adv Sci (Weinh) ; : e2309459, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049738

RESUMO

Class IIa histone deacetylases (Class IIa HDACs) play critical roles in regulating essential cellular metabolism and inflammatory pathways. However, dissecting the specific roles of each class IIa HDAC isoform is hindered by the pan-inhibitory effect of current inhibitors and a lack of tools to probe their functions beyond epigenetic regulation. In this study, a novel PROTAC-based compound B4 is developed, which selectively targets and degrades HDAC7, resulting in the effective attenuation of a specific set of proinflammatory cytokines in both lipopolysaccharide (LPS)-stimulated macrophages and a mouse model. By employing B4 as a molecular probe, evidence is found for a previously explored role of HDAC7 that surpasses its deacetylase function, suggesting broader implications in inflammatory processes. Mechanistic investigations reveal the critical involvement of HDAC7 in the Toll-like receptor 4 (TLR4) signaling pathway by directly interacting with the TNF receptor-associated factor 6 and TGFß-activated kinase 1 (TRAF6-TAK1) complex, thereby initiating the activation of the downstream mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) signaling cascade and subsequent gene transcription. This study expands the insight into HDAC7's role within intricate inflammatory networks and highlights its therapeutic potential as a novel target for anti-inflammatory treatments.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38536635

RESUMO

Porcine epidemic diarrhea virus (PEDV) infection results in significant mortality among newborn piglets, leading to substantial economic setbacks in the pig industry. Short-chain fatty acids (SCFA), the metabolites of intestinal probiotics, play pivotal roles in modulating intestinal function, enhancing the intestinal barrier, and bolstering immune responses through diverse mechanisms. The protective potential of Lactobacillus delbrueckii, Lactobacillus johnsonii, and Lactococcus lactis was first noted when administered to PEDV-infected piglets. Histological evaluations, combined with immunofluorescence studies, indicated that piglets receiving L. lactis displayed less intestinal damage, with diminished epithelial cell necrosis and milder injury levels. Differences in immunofluorescence intensity revealed a significant disparity in antigen content between the L. lactis and PEDV groups, suggesting that L. lactis might suppress PEDV replication, the intestine. We then assessed short-chain fatty acid content through targeted metabolomics, finding that acetate levels markedly varied from other groups. This protective impact was confirmed by administering acetate to PEDV-infected piglets. Data suggested that piglets receiving acetate exhibited resistance to PEDV. Flow cytometry analyses were conducted to evaluate the expression of innate and adaptive immune cells in piglets. Sodium acetate appeared to bolster innate immune defenses against PEDV, marked by elevated NK cell and macrophage counts in mesenteric lymph nodes, along with increased NK cells in the spleen and macrophages in the bloodstream. Acetic acid was also found to enhance the populations of CD8+ IFN-γ T cells in the blood, spleen, and mesenteric lymph, CD4+ IFN-γ T cells in mesenteric lymph nodes and spleen, and CD4+ IL-4+T cells in the bloodstream. Transcriptome analyses were carried out on the jejunal mucosa from piglets with PEDV-induced intestinal damage and from healthy counterparts with intact barriers. Through bioinformatics analysis, we pinpointed 189 significantly upregulated genes and 333 downregulated ones, with the PI3K-AKT, ECM-receptor interaction, and pancreatic secretion pathways being notably enriched. This transcriptomic evidence was further corroborated by western blot and qPCR. Short-chain fatty acids (SCFA) were found to modulate G protein-coupled receptor 41 (GPR41) and 43 (GPR43) in porcine intestinal epithelial cells (IPEC-J2). Post-acetic acid exposure, there was a notable upsurge in the ZO-1 barrier protein expression in IPEC-J2 compared to the unexposed control group (WT), while GPR43 knockdown inversely affected ZO-1 expression. Acetic acid amplified the concentrations of phosphorylated PI3K and AKT pivotal components of the PI3K/AKT pathway. Concurrently, the co-administration of AKT agonist SC79 and PI3K inhibitor LY294002 revealed acetic acid's role in augmenting ZO-1 expression via the P13K/AKT signaling pathway. This study demonstrates that acetic acid produced by Lactobacillus strains regulates intestinal barrier and immune functions to alleviate PEDV infection. These findings provide valuable insights for mitigating the impact of PEDV in the pig industry.

20.
Microbiome ; 12(1): 20, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317217

RESUMO

BACKGROUND: The gut microbiota is a critical factor in the regulation of host health, but the relationship between the differential resistance of hosts to pathogens and the interaction of gut microbes is not yet clear. Herein, we investigated the potential correlation between the gut microbiota of piglets and their disease resistance using single-cell transcriptomics, 16S amplicon sequencing, metagenomics, and untargeted metabolomics. RESULTS: Porcine epidemic diarrhea virus (PEDV) infection leads to significant changes in the gut microbiota of piglets. Notably, Landrace pigs lose their resistance quickly after being infected with PEDV, but transplanting the fecal microbiota of Min pigs to Landrace pigs alleviated the infection status. Macrogenomic and animal protection models identified Lactobacillus reuteri and Lactobacillus amylovorus in the gut microbiota as playing an anti-infective role. Moreover, metabolomic screening of the secondary bile acids' deoxycholic acid (DCA) and lithocholic acid (LCA) correlated significantly with Lactobacillus reuteri and Lactobacillus amylovorus, but only LCA exerted a protective function in the animal model. In addition, LCA supplementation altered the distribution of intestinal T-cell populations and resulted in significantly enriched CD8+ CTLs, and in vivo and in vitro experiments showed that LCA increased SLA-I expression in porcine intestinal epithelial cells via FXR receptors, thereby recruiting CD8+ CTLs to exert antiviral effects. CONCLUSIONS: Overall, our findings indicate that the diversity of gut microbiota influences the development of the disease, and manipulating Lactobacillus reuteri and Lactobacillus amylovorus, as well as LCA, represents a promising strategy to improve PEDV infection in piglets. Video Abstract.


Assuntos
Infecções por Coronavirus , Microbioma Gastrointestinal , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Doenças dos Suínos/prevenção & controle , Resistência à Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA