Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 170: 107454, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341965

RESUMO

Well-studied thermal spring microbial mat systems continue to serve as excellent models from which to make discoveries of general importance to microbial community ecology in order to address comprehensively the question of "who is there" in a microbial community. Cyanobacteria are highly adaptable and an integral part of many ecosystems including thermal springs. In this context, we sampled disparate thermal springs, spanning from Iceland and Poland to Greece and Tajikistan. Thirteen (13) strains were isolated and characterised with taxonomic indices and molecular markers (16S-23S rRNA region and cpcBA gene), whilst their thermotolerance was evaluated. Screening for the presence of genes encoding three heat shock proteins, as well as non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) was performed. This approach resulted in the description of two new genera (Hillbrichtia and Amphirytos) and their type species (Hillbrichtia pamiria and Amphirytos necridicus) representing Oscillatoriales and Synechococcales orders, respectively. We also found unique lineages inside the genus Thermoleptolyngbya, describing a novel species (T. hindakiae). We described the presence of sub-cosmopolitan taxa (such as Calothrix, Desertifilum, and Trichormus). Strains were diverse concerning their thermophilic ability with the strains well adapted to high temperatures possessing all three investigated genes encoding heat shock proteins as well as studied PKS and NRPS genes. In this work, we show novel cyanobacteria diversity from thermal springs from disparate environments, possible correlation of thermotolerance and their genetic background, which may have implications on strategic focusing of screening programs on underexploited taxa in these habitats.


Assuntos
Cianobactérias , Ecossistema , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Front Microbiol ; 14: 1108694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125173

RESUMO

Introduction: Microbial mats are complex communities of benthic microorganisms that occur at the soil-water interphase in lakes' shores, streams, and ponds. In the cold, mountainous desert of Eastern Pamir (Tajikistan), where scarce water bodies are influenced by extreme environmental conditions, photosynthetic cyanobacteria form diverse mats. The mats are characterized by different morphology and thickness. Their habitats exhibit a wide range of conditions; from oligosaline to hypersaline, oligotrophic to hypertrophic, and from cold ponds to hot springs. The aim of the present study was to reveal the taxonomic composition and structure of these mats and to examine which environmental factors influence them. Methods: Fifty-one mats were collected from small water bodies around Bulunkul, Karakul, and Rangkul Lakes in 2015 and 2017. The physical and chemical properties of the water were measured in situ, while the concentration of nutrients was analyzed ex-situ. To reveal the taxonomic composition of the mats, the hypervariable V3-V4 region of the 16S rRNA gene was examined using NGS technology. Results: The results of bioinformatic analyses were compared with microscopic observations. They showed that Cyanobacteria was the dominant phylum, constituting on average 35% of bacterial ASVs, followed by Proteobacteria (28%), Bacteroidota (11%), and Firmicutes (9%). Synechococcales, Oscillatoriales, and Nostocales orders prevailed in Oxyphotobacteria, with a low contribution of Chroococcales, Gloeobacterales, and Chroococcidiopsidales. Occasionally the non-photosynthetic Vampirivibrionia (Melainabacteria) and Sericytochromatia from sister clades to Oxyphotobacteria were noted in the samples. Moreover, there was a high percentage of unidentified cyanobacterial sequences, as well as the recently described Hillbrichtia pamiria gen. et sp. nov., present in one of the samples. Salinity, followed by Na and K concentrations, correlated positively with the composition and structure of Oxyphotobacteria on different taxonomic levels and the abundance of all bacterial ASVs. Discussion: The study suggests that the investigated communities possibly host more novel and endemic species. Among the environmental factors, salinity influenced the Oxyphotobacteria communities the most. Overall, the microenvironmental factors, i.e. the conditions in each of the reservoirs seemed to have a larger impact on the diversity of microbial mats in Pamir than the "subregional" factors, related to altitude, mean annual air temperature and distance between these subregions.

3.
Toxins (Basel) ; 12(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290390

RESUMO

Toxic metabolites are produced by many cyanobacterial species. There are limited data on toxigenic benthic, mat-forming cyanobacteria, and information on toxic cyanobacteria from Central Asia is even more scarce. In the present study, we examined cyanobacterial diversity and community structure, the presence of genes involved in toxin production and the occurrence of cyanotoxins in cyanobacterial mats from small water bodies in a cold high-mountain desert of Eastern Pamir. Diversity was explored using amplicon-based sequencing targeting the V3-V4 region of the 16S rRNA gene, toxin potential using PCR-based methods (mcy, nda, ana, sxt), and toxins by enzyme-linked immunosorbent assays (ELISAs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Molecular identification of cyanobacteria showed a high similarity of abundant taxa to Nostoc PCC-73102, Nostoc PCC-7524, Nodularia PCC-935 and Leptolyngbya CYN68. The PCRs revealed the presence of mcyE and/or ndaF genes in 11 samples and mcyD in six. The partial sequences of the mcyE gene showed high sequence similarity to Nostoc, Planktothrix and uncultured cyanobacteria. LC-MS/MS analysis identified six microcystin congeners in two samples and unknown peptides in one. These results suggest that, in this extreme environment, cyanobacteria do not commonly produce microcystins, anatoxins and cylindrospermopsins, despite the high diversity and widespread occurrence of potentially toxic taxa.


Assuntos
Alcaloides/metabolismo , Temperatura Baixa , Cianobactérias/metabolismo , Clima Desértico , Toxinas Marinhas/metabolismo , Microbiota , Microcistinas/metabolismo , Microbiologia da Água , Cianobactérias/classificação , Cianobactérias/genética , Toxinas de Cianobactérias , Regulação Bacteriana da Expressão Gênica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA