RESUMO
Saponin is an essential natural compound in purple yams with high nutritional and medicinal value. In this work, a multitemplate molecule-imprinted polymer (MMIP) was synthesized with dioscin, protodioscin, and diosgenin templates. The MMIPs were characterized with scanning electron microscopy, thermogravimetric analysis, Brunauer-Emmett-Teller (BET) adsorption, and Fourier transform infrared spectroscopy. The efficacy of the MMIPs was assessed with static, dynamic, selective adsorption, desorption, and reusability experiments. The three saponins were selectively extracted and determined by MMIP-high-performance liquid chromatography. The polymer morphology was regular and spherical. The amount of the MMIP adsorbed was 74.825 mg/g, and the imprinting factor was 2.1. The MMIP adsorbed the three saponins from purple yam extract, with recovery rates of 95.5-103.43 % and desorption rates of 85 %-98 %. In addition, the MMIPs were reused at least six times. These results demonstrated that the MMIPs efficiently and selectively extracted dioscin, protodioscin, and diosgenin from food matrices at high rates.
Assuntos
Dioscorea , Diosgenina/análogos & derivados , Impressão Molecular , Saponinas , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Polímeros/química , Adsorção , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodosRESUMO
Introduction: Shizao decoction (SZD) is a traditional Chinese medicine decoction that has therapeutic effects on cirrhotic ascites (CAS). Because of the unclear treatment mechanism, in the current study, the anti-CAS activity of SZD and molecular mechanisms were analyzed by network analysis combined with pharmacokinetics and metabolomics. Methods: Firstly, we assessed the anti-CAS efficacy of SZD by hematoxylin-eosin (H&E), liver function tests, NO and ET-1 levels, and portal venous pressure. Secondly, network analysis was applied to dig out the metabolites, targets, and pathways related to SZD and CAS. Then, the pharmacokinetics of the pharmacokinetically relevant metabolites (PRM) were analyzed. Thirdly, the serum and urine metabolic biomarkers of rats with CAS were identified using metabolomics by comparing them with the SZD treatment group. In addition, MetaboAnalyst was utilized to conduct metabolic pathway analysis. Finally, the correlation analysis established a dynamic connection between absorbed PRM from SZD and CAS-associated endogenous metabolites. Results: Pharmacodynamic analysis indicated that SZD effectively mitigated liver injury symptoms by ameliorating inflammatory cell infiltration in CAS rats. The network analysis results indicated that twelve RPM contribute to the therapeutic efficacy of SZD against CAS; the key signaling pathways involved might be hepatitis B and PI3K-Akt. Pharmacokinetics results showed that the 12 RPM were efficiently absorbed into rat plasma, ensuring desirable bioavailability. The metabolomic analysis yielded 21 and 23 significantly distinct metabolites from the serum and urine, respectively. The 12 bioavailable SZD-PRM, such as luteolin, apigenin, and rutin, may be associated with various CAS-altered metabolites related to tryptophan metabolism, alpha-linolenic acid metabolism, glycine metabolism, etc. Discussion: A novel paradigm was provided in this study to identify the potential mechanisms of pharmacological effects derived from a traditional Chinese medicine decoction.
RESUMO
The extraction of active ingredients from traditional Chinese medicine has received considerable attentions. In this study, 16 kinds of natural deep eutectic solvent (NADES) with ultrasonic were selected to extract saponins from purple yam root and the extraction mechanism was investigated. The results showed that chloride/acrylic acid (1:2; n/n) had the highest extraction yield for saponins. The optimal extraction process parameters were 24% water content, 20 mL/g liquid-solid ratio, and ultrasonic extraction for 85 min (81 °C, 600 W). The extraction rate (ER) of purple yam saponins was 0.935%, close to the fitted result of 96.5 mg/g. Molecular dynamics simulations and FT-IR results showed that the NADES may extract the saponin constituents from purple yam through hydrogen bonding. Compared with traditional extraction methods and molecularly imprinted polymer methods, NADES has a higher ER and lower cost (1.53 $/g), which provides a reference for subsequent industrial quantitative production.