Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 27(5): 1330-1342, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33657340

RESUMO

During the ongoing coronavirus disease (COVID-19) pandemic, farmworkers in the United States are considered essential personnel and continue in-person work. We conducted prospective surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and antibody prevalence among farmworkers in Salinas Valley, California, during June 15-November 30, 2020. We observed 22.1% (1,514/6,864) positivity for SARS-CoV-2 infection among farmworkers compared with 17.2% (1,255/7,305) among other adults from the same communities (risk ratio 1.29, 95% CI 1.20-1.37). In a nested study enrolling 1,115 farmworkers, prevalence of current infection was 27.7% among farmworkers reporting >1 COVID-19 symptom and 7.2% among farmworkers without symptoms (adjusted odds ratio 4.16, 95% CI 2.85-6.06). Prevalence of SARS-CoV-2 antibodies increased from 10.5% (95% CI 6.0%-18.4%) during July 16-August 31 to 21.2% (95% CI 16.6%-27.4%) during November 1-30. High SARS-CoV-2 infection prevalence among farmworkers underscores the need for vaccination and other preventive interventions.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , California/epidemiologia , Fazendeiros , Humanos , Prevalência , Estudos Prospectivos , Estados Unidos
2.
Int J Health Care Qual Assur ; 32(2): 347-359, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31017055

RESUMO

PURPOSE: Measures are important to healthcare outcomes. Outcome changes result from deliberate selective intervention introduction on a measure. If measures can be characterized and categorized, then the resulting schema may be generalized and utilized as a framework for uniquely identifying, packaging and comparing different interventions and probing target systems to facilitate selecting the most appropriate intervention for maximum desired outcomes. Measure characterization was accomplished with multi-axial statistical analysis and measure categorization by logical tabulation. The measure of interest is a key provider productivity index: "patient visits per hour," while the specific intervention is "patient schedule manipulation by overbooking." The paper aims to discuss these issues. DESIGN/METHODOLOGY/APPROACH: For statistical analysis, interrupted time series (ITS), robust-ITS and outlier detection models were applied to an 18-month data set that included patient visits per hour and intervention introduction time. A statistically significant change-point was determined, resulting in pre-intervention, transitional and post-effect segmentation. Linear regression modeling was used to analyze pre-intervention and post-effect mean change while a triangle was used to analyze the transitional state. For categorization, an "intervention moments" table was constructed from the analysis results with: time-to-effect, pre- and post-mean change magnitude and velocity; pre- and post-correlation and variance; and effect decay/doubling time. The table included transitional parameters such as transition velocity and transition footprint visualization represented as a triangle. FINDINGS: The intervention produced a significant change. The pre-intervention and post-effect means for patient visits per hour were statistically different (0.38, p=0.0001). The pre- and post-variance change (0.23, p=0.01) was statistically significant (variance was higher post-intervention, which was undesirable). Post-intervention correlation was higher (desirable). Decay time for the effect was calculated as 11 months post-effect. Time-to-effect was four months; mean change velocity was +0.094 visits per h/month. A transition triangular footprint was produced, yielding 0.35 visits per hr/month transition velocity. Using these results, the intervention was fully profiled and thereby categorized as an intervention moments table. RESEARCH LIMITATIONS/IMPLICATIONS: One limitation is sample size for this time series, 18 monthly cycles' analysis. However, interventions on measures in healthcare demand short time cycles (hence necessarily yielding fewer data points) for practicality, meaningfulness and usefulness. Despite this shortcoming, the statistical processes applied such as outliers detection, t-test for mean difference, F-test for variances and modeling, all consider the small sample sizes. Seasonality, which usually affects time series, was not detected and even if present, was also considered by modeling. PRACTICAL IMPLICATIONS: Obtaining an intervention profile, made possible by multidimensional analysis, allows interventions to be uniquely classified and categorized, enabling informed, comparative and appropriate selective deployment against health measures, thus potentially contributing to outcomes optimization. SOCIAL IMPLICATIONS: The inevitable direction for healthcare is heavy investment in measures outcomes optimization to improve: patient experience; population health; and reduce costs. Interventions are the tools that change outcomes. Creative modeling and applying novel methods for intervention analysis are necessary if healthcare is to achieve this goal. Analytical methods should categorize and rank interventions; probe the measures to improve future selection and adoption; reveal the organic systems' strengths and shortcomings implementing the interventions for fine-tuning for better performance. ORIGINALITY/VALUE: An "intervention moments table" is proposed, created from a multi-axial statistical intervention analysis for organizing, classifying and categorizing interventions. The analysis-set was expanded with additional parameters such as time-to-effect, mean change velocity and effect decay time/doubling time, including transition zone analysis, which produced a unique transitional footprint; and transition velocity. The "intervention moments" should facilitate intervention cross-comparisons, intervention selection and optimal intervention deployment for best outcomes optimization.


Assuntos
Avaliação de Resultados em Cuidados de Saúde/métodos , Projetos de Pesquisa , Coleta de Dados , Humanos , Análise de Séries Temporais Interrompida , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA