Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 384, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891562

RESUMO

BACKGROUND: Methotrexate (MTX) is a common chemotherapeutic drug that inhibits DNA synthesis and induces apoptosis. Treatment with MTX increased CD73 expression, which leads to higher levels of extracellular adenosine. Adenosine levels are also high in the tumor microenvironment through Cancer cells metabolism. That promotes the survival of cancer cells and contributes to tumor immune evasion through the Adenosine 2a Receptor. A2A receptor antagonists are an emerging class of agents that treat cancers by enhancing immunotherapy, both as monotherapy and in combination with other therapeutic agents. Caffeine is an adenosine receptor antagonist. Herein, we demonstrate the ability of a novel well prepared and characterized nano formula CAF-FA-CS-NPs (D4) for A2aR blockade when combination with MTX to improve its antitumor efficacy by enhancing the immune system and eliminating immune suppression. METHODS: CAF-FA-CS-NPs (D4) were prepared and characterized for particle size, loading efficiency, and release profile. Molecular docking was used to validate the binding affinity of caffeine and folic acid to A2A receptor. The effects of the nano formula were evaluated on human liver cancer cells (HepG2), breast cancer cells (MCF-7), and MDA-MB-231, as well as normal human cells (WI-38). Different combination ratios of MTX and D4 were studied to identify the optimal combination for further genetic studies. RESULTS: Molecular docking results validated that caffeine and folic acid have binding affinity to A2A receptor. The CS-NPs were successfully prepared using ionic gelation method, with caffeine and folic acid being loaded and conjugated to the nanoparticles through electrostatic interactions. The CAF loading capacity in D4 was 77.9 ± 4.37% with an encapsulation efficiency of 98.5 ± 0.37. The particle size was optimized through ratio variations. The resulting nanoparticles were fully characterized. The results showed that (D4) had antioxidant activity and cytotoxicity against different cancer cells. The combination of D4 with MTX (IC50 D4 + 0.5 IC50 MTX) resulted in the downregulation of Bcl-2, FOXP3, CD39, and CD73 gene expression levels and upregulation of Bax and A2AR gene expression levels in HepG2 cells. CONCLUSIONS: This study suggests that CAF-FA-CS-NPs (D4) in combination with MTX may be a promising candidate for cancer immunotherapy, by inhibiting A2aR signaling and leading to improved immune activation and anti-tumor activity of MTX.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Humanos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Ácido Fólico/uso terapêutico , Quitosana/química , Receptor A2A de Adenosina/uso terapêutico , Cafeína/farmacologia , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Nanopartículas/química , Imunoterapia , Adenosina , Microambiente Tumoral
2.
J King Saud Univ Sci ; 34(8): 102296, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36062198

RESUMO

Objective: The study purpose was to compare the anti- novel coronavirus disease 2019 (COVID-19) property of chlorogenic acid (CGA) and Zinc oxide nanoparticles (ZnO-NP) with the new valid synthesized complex of ZnO /CGA-NPs. Methods: The facile mixing method was utilized to prepare ZnO/CGA-NPs. The in vitro effect of different ZnO/CGA-NPs concentrations on papain-like protease (PLpro) and spike protein- receptor-binding domain (RBD) was measured by ELISA technique. The compounds effects on SARS-CoV2 were determined on viral entry, replication, and assembly by using plaque reduction assay, qPCR, and ELISA techniques. Their individual effects or mixed with hydroxychloroquine (HCQ) on erythrocytes (RBCs) and leukocytes (WBCs) were evaluated by routine cell culture technique. Finally, turbidity and agar well diffusion assays were done to evaluate their antimicrobial properties against Escherichia. coli, klebsila pneumonia, Streptococcus pyogenes, Staphylococcus aureus, and Candida albicans. Results: The results confirmed that the uniformly dispersed ZnO-NPs were converted to aggregated form of ZnO/CGA-NPs upon the addition of CGA. The inhibitory concentration 50 (IC50) of ZnO /CGA-NPs against RBD, angiotensin-converting enzyme 2 (ACE2) and PLpro were 1647.7, 323.3 µg/mL and 38.7 µg/mL, respectively. Also, it inhibited E-gene, RdRp gene, E-protein, and spike protein with an IC50 of 0.11, 0.13, 0.48, and 0.37 µg/mL, respectively. It acted as an antimicrobial against all tested organisms with a minimum inhibitory concentration (MIC) of 26 µg/mL. Finally, ZnO/CGA-NPs Complex (0.1 IC50) prevented the cytotoxic effect of HCQ on RBCs and WBC by 92.3 and 90 %, respectively. Conclusion: ZnO/CGA-NPs Complex can be considered as a new anti- severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) compound.

3.
J Pharm Investig ; 51(3): 281-296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688448

RESUMO

BACKGROUND: At the end of 2019, the new Coronavirus disease 2019 (COVID-19) strain causing severe acute respiratory syndrome swept the world. From November 2019 till February 2021, this virus infected nearly 104 million, with more than two million deaths and about 25 million active cases. This has prompted scientists to discover effective drugs to combat this pandemic. AREA COVERED: Drug repurposing is the magic bullet for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). Therefore, several drugs have been investigated in silico, in vitro, as well as through human trials such as anti-SARS-CoV2 agents, or to prevent the complications resulting from the virus. In this review, the mechanisms of action of different therapeutic strategies are summarized. According to the WHO, different classes of drugs can be used, including anti-malarial, antiviral, anti-inflammatory, and anti-coagulant drugs, as well as angiotensin-converting enzyme inhibitors, antibiotics, vitamins, zinc, neutralizing antibodies, and convalescent plasma therapy. Recently, there are some vaccines which are approved against SARS-CoV2. EXPERT OPINION: A complete understanding of the structure and function of all viral proteins that play a fundamental role in viral infection, which contribute to the therapeutic intervention and the development of vaccine in order to reduce the mortality rate. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40005-021-00520-4.

4.
J Pharm Investig ; 51(6): 735-757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513113

RESUMO

Purpose: A novel coronavirus (COVID-19) that has not been previously identified in humans and has no specific treatment has recently spread. Treatment trials using antiviral and immune-modulating drugs such as hydroxychloroquine (HCQ) were used to control this viral outbreak however several side effects have emerged. Berberine (BER) is an alkaloid that has been reported to reveal some pharmacological properties including antioxidant and antimicrobial activities. Additionally, Zinc oxide nanoparticles (ZnO-NPs) possess potent antioxidant and anti-inflammatory properties. Therefore, this study was undertaken to estimate the efficiency of both BER and synthetic ZnO/BER complex as an anti-COVID-19 therapy. Methods: First, the ZnO/BER complex was prepared by the facile mixing method. Then in vitro studies on the two compounds were conducted including VeroE6 toxicity, anti-COVID-19 activity, determination of inhibitory activity towards papain-like proteinase (PL pro) and spike protein- and receptor- binding domain (RBD) as well as assessment of drug toxicity on RBCs. Results: The results showed that ZnO/BER complex acts as an anti-COVID-19 by inhibiting spike protein binding with angiotensin-converting enzyme II (ACE II), PL pro activity, spike protein and E protein levels, and expression of both E-gene and RNA dependent RNA polymerase (RdRp) at a concentration lower than that of BER or ZnO-NPs alone. Furthermore, ZnO/BER complex had antioxidant and antimicrobial properties where it prevents the auto oxidation of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and the culture of lower respiratory system bacteria that affected Covid 19 patients. The ZnO/BER complex prevented as well the HCQ cytotoxic effect on both RBC and WBC (in vitro) and hepatotoxicity, nephrotoxicity and anemia that occurred after HCQ long administration in vivo. Conclusion: The ZnO/BER complex can be accounted as promising anti-COVID 19 candidate because it inhibited the virus entry, replication, and assembly. Furthermore, it could be used to treat a second bacterial infection that took place in hospitalized COVID 19 patients. Moreover, ZnO/BER complex was found to eliminate the toxicity of long-term administration of HCQ in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA