Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(1): e23341, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031982

RESUMO

Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.


Assuntos
Antioxidantes , Consumo Excessivo de Bebidas Alcoólicas , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Pressão Sanguínea , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Taxa de Filtração Glomerular , Rim/metabolismo , Suplementos Nutricionais , Etanol/farmacologia , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo
2.
J Physiol ; 601(24): 5617-5633, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994192

RESUMO

Binge drinking (BD) is the most common alcohol consumption model for adolescents, and has recently been related to the generation of high oxidation and insulin resistance (IR). White adipose tissue (WAT) is a target organ for insulin action that regulates whole-body metabolism by secreting adipokines. The present study aimed to analyse the oxidative, inflammatory, energetic and endocrine profile in the WAT of BD-exposed adolescent rats, to obtain an integrative view of insulin secretion and WAT in IR progression. Two groups of male adolescent rats were used: control (n = 8) and BD (n = 8). An intermittent i.p. BD model (20% v/v) was used during 3 consecutive weeks. BD exposure led to a pancreatic oxidative imbalance, which was joint to high insulin secretion by augmenting deacetylase sirtuin-1 (SIRT-1) pancreatic expression and serum adipsin levels. However, BD rats had hyperglycaemia and high homeostasis model assessment of insulin resistance value (HOMA-IR). BD exposure in WAT increased lipid oxidation, as well as decreased insulin receptor substrate 1 (IRS-1) and AKT expression, sterol regulatory element-binding protein 1 (SREBP1), forkhead box O3A (FOXO3a) and peroxisome proliferator-activated receptor γ (PPARγ), and adipocyte size. BD also affected the expression of proteins related to energy balance, such as SIRT-1 and AMP activated protein kinase (AMPK), affecting the adipokine secretion profile (increasing resistin/adiponectin ratio). BD altered the entire serum lipid profile, increasing the concentration of free fatty acids. In conclusion, BD led to an oxidative imbalance and IR process in WAT, which modified the energy balance in this tissue, decreasing the WAT lipogenic/lipolytic ratio, affecting adipokine secretion and the systemic lipid profile, and contributing to the progression of IR. Therefore, WAT is key in the generation of metabolic and endocrine disruption after BD exposure during adolescence in rats. KEY POINTS: Adolescent rat binge drinking (BD) exposure leads to hepatic and systemic oxidative stress (OS) via reactive oxygen species generation, causing hepatic insulin resistance (IR) and altered energy metabolism. In the present study, BD exposure in adolescent rats induces OS in the pancreas, with increased insulin secretion despite hyperglycaemia, indicating a role for IR in white adipose tissue (WAT) homeostasis. In WAT, BD produces IR and an oxidative and energetic imbalance, triggering an intense lipolysis where the serum lipid profile is altered and free fatty acids are increased, consistent with liver lipid accumulation and steatosis. BD exposure heightens inflammation in WAT, elevating pro-inflammatory and reducing anti-inflammatory adipokines, favouring cardiovascular damage. This research provides a comprehensive view of how adolescent BD in rats impacts liver, WAT and pancreas homeostasis, posing a risk for future cardiometabolic complications in adulthood.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Fígado Gorduroso , Hiperglicemia , Resistência à Insulina , Ratos , Masculino , Animais , Ácidos Graxos não Esterificados/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Tecido Adiposo/metabolismo , Adipocinas/metabolismo , Fígado Gorduroso/metabolismo , Tecido Adiposo Branco/metabolismo , Etanol/metabolismo , Hiperglicemia/metabolismo , Homeostase , Estresse Oxidativo
3.
Am J Drug Alcohol Abuse ; 47(6): 680-693, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34582310

RESUMO

BACKGROUND: Binge drinking (BD) during adolescence is related to cardiovascular alterations. Selenium (Se) is an essential trace element with antioxidant, anti-inflammatory and antiapoptotic properties, essential for correct heart function. OBJECTIVES: To study the protective cardiovascular effects of selenium in adolescent rats exposed to a BD-like procedure. METHODS: 32 adolescent male rats exposed to an intraperitoneally BD-like model or not, and supplemented with 0.4ppm of selenite or not, were divided into 4 groups: control, alcohol, control-selenium and alcohol-selenium. Blood pressure and heart rate (HR) were determined after experimentation. Se deposits, oxidative balance and the expression of glutathione peroxidases (GPxs), NF-kB and caspase-3 were measured in the heart. Also, DNA instability in rat lymphocytes and serum vascular markers were determined. Statistical analysis was performed with the ANOVA model. RESULTS: The BD-like model depleted Se heart deposits (p < .01), decreased GPx activity (p < .01) and GPx1 (p < .001) and GPx4 (p < .05) expression, increased NF-kB (p < .01), caspase-3 (p < .001) expression, and generated oxidation in myocytes. Outside the heart, the BD-like model caused double-strand breaks in lymphocyte DNA and increased all the vascular markers measured. These cardiovascular alterations were related to higher systolic (p < .001) and diastolic (p < .05) blood pressure and HR (p < .05). In the heart, Se supplementation in BD-exposed rats significantly increased Se deposits (p < .001) and improved oxidative balance and vascular damage, including increased GPxs and decreased NF-kB and caspase-3 activation, consequently decreasing systolic (p < .05) blood pressure and HR (p < .01). CONCLUSIONS: Se supplementation presents cardioprotective effects since it reversed HR and systolic blood pressure observed in BD-exposed adolescent rats.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Selênio , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Pressão Sanguínea , Frequência Cardíaca , Humanos , Fígado , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Selênio/metabolismo , Selênio/uso terapêutico
4.
Toxicol Appl Pharmacol ; 382: 114744, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494150

RESUMO

High- and low- Se diets received by dams during gestation and lactation are related to insulin resistance in their pups. High-Se diet leads to an increase in serum insulin levels, which does not function properly, and an anabolic process. Low-Se diet is related to very low insulin values and an extreme catabolic energy imbalance. Selenoproteins have been implicated directly in the general endocrine regulation of appetite and energy homeostasis. To obtain information concerning how Se intake by dams is involved in regulating endocrine energy balance in progeny, three experimental groups of dam rats were used: control (Se: 0.1 ppm), Se-supplemented (Se: 0.5 ppm) and Se-deficient (Se: 0.01 ppm). At the end of lactation (21d old), the pups' appetite profile, Se levels, peptides from gastrointestinal tract (including pancreas), leptin, thyroid hormones, skeletal growth markers and cytokines in serum were measured. Low-Se diet leads to severe growth retardation, underdeveloped glands, a non-functional pancreas, non-operative high serum leptin levels and low GIT-anorexigenic signals. High-Se diet leads to non-operative high insulin secretion, obesity, inflammation and low leptin levels. These results point to Se as an important marker and a possible dietary supplementation treatment for gestating and lactating mothers in order to avoid metabolic disorders such as gestational diabetes or intrauterine growth retardation which could affect their progeny's future health in adulthood.


Assuntos
Suplementos Nutricionais/toxicidade , Metabolismo Energético/efeitos dos fármacos , Hiperinsulinismo/induzido quimicamente , Obesidade/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Selênio/toxicidade , Animais , Animais Recém-Nascidos , Metabolismo Energético/fisiologia , Feminino , Hiperinsulinismo/metabolismo , Lactação/efeitos dos fármacos , Lactação/metabolismo , Masculino , Obesidade/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Selênio/administração & dosagem
5.
Eur J Nutr ; 58(8): 3171-3181, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30506446

RESUMO

PURPOSE: High and low levels of selenium (Se) have been related to metabolic disorders in dams and in their offspring. Their relationship to oxidative balance and to AMP-activated protein kinase (AMPK) is some of the mechanisms proposed. The aim of this study is to acquire information about how Se is involved in metabolic programming. METHODS: Three experimental groups of dam rats were used: control (Se: 0.1 ppm), Se supplemented (Se: 0.5 ppm) and Se deficient (Se: 0.01 ppm). At the end of lactation, the pups' metabolic profile, oxidative balance, Se levels, selenoproteins and IRS-1 hepatic expression, as well as hepatic AMPK activation were measured. RESULTS: The experimental groups present deep changes in Se homeostasis, selenoproteins and IRS-1 hepatic expression, oxidative balance, AMPK activation ratio and insulin levels. They do, however, have different metabolic profiles. CONCLUSIONS: High- and low-Se diets are linked to insulin resistance, yet the mechanisms involved are completely opposite.


Assuntos
Desenvolvimento Fetal/fisiologia , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Oxirredução , Selênio/sangue , Selênio/deficiência , Proteínas Quinases Ativadas por AMP/sangue , Ração Animal , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Masculino , Mães , Gravidez , Ratos , Ratos Wistar , Selênio/administração & dosagem , Selenoproteínas/sangue
6.
Biochem Cell Biol ; 96(2): 178-188, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29040815

RESUMO

There are disorders in children, covered by the umbrella term "fetal alcohol spectrum disorder" (FASD), that occur as result of alcohol consumption during pregnancy and lactation. They appear, at least in part, to be related to the oxidative stress generated by ethanol. Ethanol metabolism generates reactive oxygen species and depletes the antioxidant molecule glutathione (GSH), leading to oxidative stress and lipid and protein damage, which are related to growth retardation and neurotoxicity, thereby increasing the incidence of FASD. Furthermore, prenatal and postnatal exposure to ethanol in dams, as well as increasing oxidation in offspring, causes malnutrition of several micronutrients such as the antioxidant folic acid and selenium (Se), affecting their metabolism and bodily distribution. Although abstinence from alcohol is the only way to prevent FASD, it is possible to reduce its harmful effects with a maternal dietary antioxidant therapy. In this review, folic acid and Se have been chosen to be analyzed as antioxidant intervention systems related to FASD because, like ethanol, they act on the methionine metabolic cycle, being related to the endogenous antioxidants GSH and glutathione peroxidase. Moreover, several birth defects are related to poor folate and Se status.


Assuntos
Etanol/efeitos adversos , Transtornos do Espectro Alcoólico Fetal , Ácido Fólico/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Selênio/uso terapêutico , Animais , Criança , Pré-Escolar , Feminino , Transtornos do Espectro Alcoólico Fetal/metabolismo , Transtornos do Espectro Alcoólico Fetal/patologia , Transtornos do Espectro Alcoólico Fetal/prevenção & controle , Humanos , Masculino , Micronutrientes/uso terapêutico , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle
7.
Toxicol Appl Pharmacol ; 329: 165-172, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28579252

RESUMO

Alcohol intermittent binge drinking (BD) during adolescence decreases the levels of selenium (Se), a trace element that plays a key biological role against oxidative damage in hepatocytes through different selenoproteins such as the antioxidant enzymes glutathione peroxidases (GPx1 and Gpx4) and selenoprotein P (SelP). In this context, it has been found that GPx4 has an essential antioxidant role in mitochondria modulating the apoptosis and NF-kB activation (a factor intimately related to apoptosis and immune function). To further investigate the effectiveness of selenium supplementation in oxidative balance, inflammation and apoptosis, the present study examined the protective effects of 0.4ppm of dietary selenite administrated to adolescent rats exposed to BD. BD consumption depleted Se deposits in all the tissues studied. In liver, GPx1 activity and expression were decreased leading to protein and lipid hepatic oxidation. Moreover GPx4 and NF-kB expression were also decreased in liver, coinciding with an increase in caspase-3 expression. This hepatic profile caused general liver damage as shown the increased serum transaminases ratio AST/ALT. Proinflammatory serum citokines and chemocines were decreased. Se supplementation therapy used restored all these values, even AST levels. These findings suggest for first time that Se supplementation is a good strategy against BD liver damage during adolescence, since it increases GPx1 and GPx4 expression and avoids NF-kB downregulation and caspase-3 upregulation, leading to a better oxidative, inflammatory and apoptotic liver profile. The therapy proposed could be considered to have a great biological efficacy and to be suitable for BD exposed teenagers in order to avoid future hepatic complications.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Suplementos Nutricionais , Hepatopatias Alcoólicas/prevenção & controle , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Selenito de Sódio/farmacologia , Fatores Etários , Alanina Transaminase/sangue , Animais , Anti-Inflamatórios/farmacologia , Aspartato Aminotransferases/sangue , Consumo Excessivo de Bebidas Alcoólicas/sangue , Consumo Excessivo de Bebidas Alcoólicas/imunologia , Consumo Excessivo de Bebidas Alcoólicas/patologia , Caspase 3/metabolismo , Citocinas/sangue , Citoproteção , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo , Humanos , Mediadores da Inflamação/sangue , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/sangue , Hepatopatias Alcoólicas/imunologia , Hepatopatias Alcoólicas/patologia , Masculino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos Wistar , Selenoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Consumo de Álcool por Menores , Glutationa Peroxidase GPX1
8.
Eur J Nutr ; 56(2): 819-830, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26680597

RESUMO

PURPOSE: Selenium (Se) has a dual role in metabolic syndrome (MS) development as it has an antioxidant action against both "good" and "bad" reactive oxygen species. This study evaluates Se body profile in dams which present MS during gestation and lactation, in order to elucidate a normal dietary Se's implication in this pathology. METHOD: Rats were randomized into control (C) and fructose (F) groups. The rich fructose diet (65 %) during gestation and lactation periods induced MS in dams. Se body distribution was determined by atomic absorption spectrophotometry, and the hepatic activity of the four antioxidant enzymes and the bimolecular oxidation were determined by spectrophotometry. The cardiac activity was monitored using the indirect tail occlusion method. Lipid and glucidic profile was also analyzed. RESULTS: Despite the fact that the diet supplied has 0.1 ppm of Se, the minimal dietary requirement for rats, F dams ate less amount of food, and therefore, they had lower Se retention. However, they had normal levels of Se in serum and milk. Dams with MS had Se depletion in heart and muscle joint to hypertension and a lower heart rate, and Se repletion in liver and kidney. Despite the increase in hepatic glutathione peroxidase (GPx) and catalase activity found, lipid oxidation occurred-probably because superoxide dismutase activity was diminished. In heart, the activity and expression of the selenoprotein GPx1 were decreased. CONCLUSION: With these results, it is not possible to elucidate whether a dietary Se supplementation or a Se-restricted diet are good for MS; because despite the fact that GPx activity is increased in liver, it is also found, for the first time, that heart Se deposits are significantly decreased during MS.


Assuntos
Lactação , Síndrome Metabólica/metabolismo , Estresse Oxidativo , Complicações na Gravidez/metabolismo , Selênio/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Bradicardia/etiologia , Dieta da Carga de Carboidratos/efeitos adversos , Dislipidemias/etiologia , Feminino , Frutose/efeitos adversos , Hipertensão/etiologia , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Síndrome Metabólica/sangue , Síndrome Metabólica/etiologia , Síndrome Metabólica/fisiopatologia , Leite/química , Oxirredutases/metabolismo , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/etiologia , Complicações na Gravidez/fisiopatologia , Distribuição Aleatória , Ratos Wistar , Selênio/análise , Selênio/sangue , Distribuição Tecidual
9.
Alcohol Clin Exp Res ; 39(5): 818-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25864381

RESUMO

BACKGROUND: Binge drinking (BD) is the most common ethanol (EtOH) intake consumption model among teenagers, but little is known about its effects on the liver. During its hepatic metabolism, acute alcohol exposure produces a great amount of reactive oxygen species which contributes to alcohol-induced liver injury. Selenium (Se) plays a key role in antioxidant defense as it forms part of selenoproteins, such as the antioxidant glutathione peroxidases (GPxs) or the selenoprotein P (SelP), synthesized mainly in liver. Chronic EtOH consumption decreases both Se deposits and this tissue's antioxidant activity. METHODS: Two BD administration routes (oral and intraperitoneal) were used in adolescent rats to analyze Se homeostasis; the main hepatic selenoproteins' expression: GPx1, GPx4, and SelP, and their biological roles related to oxidation. Their relationship with inflammatory processes was also determined by analyzing the expression of the transcriptional factor nuclear factor-kappa beta (NF-κB). RESULTS: It has been demonstrated for the first time that BD in adolescents alters Se homeostasis regardless of the administration route employed, despite the fact that the BD oral group ingested less Se in diet. This decrease of Se in serum and liver is directly related to a decrease in serum GPx3 and hepatic GPx1 activity, contributing to the oxidative imbalance found. The depletion of Se detected in liver affects GPx1 expression and, surprisingly, GPx4 expression. This could be related to the lower expression of the transcriptional factor NF-κB in the liver, a key player in the regulation of inflammatory processes. CONCLUSIONS: Due to the above, and to find whether a Se supplementation therapy improves these situations, it would be interesting to explore in more depth the relationship between Se, the high oxidation found, and the depressed immune response reported in BD adolescents.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Etanol/administração & dosagem , Etanol/farmacologia , Homeostase/efeitos dos fármacos , Fígado/metabolismo , Selênio/metabolismo , Selenoproteína P/biossíntese , Administração Oral , Fatores Etários , Animais , Fezes/química , Glutationa Peroxidase/biossíntese , Glutationa Peroxidase/sangue , Infusões Parenterais , Masculino , NF-kappa B/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos , Selênio/análise , Selênio/sangue , Selênio/urina , Glutationa Peroxidase GPX1
10.
Chem Res Toxicol ; 27(11): 1926-33, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25330177

RESUMO

Oxidative imbalance is one of the most important mechanisms of alcohol-induced injury. Acute alcohol exposure induces a significant amount of reactive oxygen species during its hepatic metabolism via the microsomal ethanol oxidizing system. During adolescence, the physiological development is still taking place; therefore, ethanol's effects differ in adolescents compared to that in adults. Because binge drinking is the most important model of ethanol intake used by adolescents and because little is known about its effects on the liver, we have used two routes of acute ethanol administration (oral and intraperitoneal) in adolescent rats in order to analyze the oxidative damage caused in the periphery and liver. Here, it has been demonstrated for the first time that binge drinking in adolescents causes peripheral oxidation of lipid and DNA as well as lipid and protein hepatic oxidation, which are related to lower glutathione peroxidise (GPx) activity, higher catalase (CAT) activity, and higher expression of NADPHoxidase, contributing to hepatic damage. In addition, it is shown that the intraperitoneal administration route results in increased oxidative damage, which is probably related to the resulting general stress response that causes higher DNA and protein oxidation due to higher NADPHoxidase expression and higher CAT and superoxide dismutase (SOD) activities. According to these results, it is concluded that binge drinking induces hepatic damage during adolescence, at least in part, as consequence of oxidative stress because the antioxidant response was insufficient to avoid liver oxidation. Alcohol administered intraperitoneally provoked more DNA oxidation than that from the oral alcohol exposure model.


Assuntos
Envelhecimento , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Etanol/toxicidade , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Administração Oral , Envelhecimento/metabolismo , Animais , Antioxidantes/metabolismo , Biomarcadores/sangue , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Etanol/administração & dosagem , Injeções Intraperitoneais , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Masculino , Ratos Wistar
11.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929188

RESUMO

Studies on adolescent rats, when body composition is changing deeply, reveal that the administration of sodium selenite and selenium nanoparticles (SeNPs), at the same dose, have opposite effects on adipogenesis in white adipose tissue (WAT). To investigate the mechanisms involved in these contrasting effects by means of transcriptomic analysis, three groups of male adolescent rats (n = 18) were used: control (C), selenite supplemented (S), and SeNPs supplemented (NS). Both treated groups received a twofold increase in Se dose compared to the control group through water intake for three weeks. Following treatment, WAT was removed and frozen at -80 °C until subsequent use for RNA extraction, endogenous antioxidant enzymatic activities determination, and quantification of H2O2 and malondialdehyde. NS rats displayed a larger number of differentially expressed genes and cellular processes impacted than S rats. Remarkably, these changes involved upregulation of gene expression associated with the immune system, catabolism, mitochondrial function, and oxidative balance. NS rats presented an increase in antioxidant enzymes activity, alongside an accumulation of H2O2 and malondialdehyde levels. The expression level of 81 genes related to oxidative stress was significantly affected in NS rats. Analyzing the KEGG pathway enrichment revealed that NS rats exhibited increased activity in key catabolic pathways and decreased activity in crucial growth signaling processes. These changes contribute to the mass decrease in WAT found in NS rats. These results suggest a possible application of SeNPs in WAT reduction and induction of the immune response during adolescence.

12.
Food Funct ; 15(15): 7988-8007, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38984595

RESUMO

Adolescence is characterized by increased vulnerability to addiction and ethanol (EtOH) toxicity, particularly through binge drinking (BD), a favored acute EtOH-ingestion pattern among teenagers. BD, highly pro-oxidant, induces oxidative stress (OS), affecting skeletal muscle (SKM), where selenium (Se), an antioxidant element and catalytic center of selenoproteins, is stored, among other tissues. Investigating the effects of Se supplementation on SKM after BD exposure holds therapeutic promise. For this, we randomised 32 adolescent Wistar rats into 4 groups, exposed or not to intermittent i.p. BD [BD and control (C)] (3 g EtOH per kg per day), and supplemented with selenite [BDSe and CSe] (0.4 ppm). In SKM, we examined the oxidative balance, energy status (AMPK, SIRT-1), protein turnover (IRS-1, Akt1, mTOR, IGF-1, NF-κB p65, MAFbx, ULK1, pelF2α), serum myokines (myostatin, IL-6, FGF21, irisin, BDNF, IL-15, fractalkine, FSTL-1, FABP-3), and selenoproteins (GPx1, GPx4, SelM, SelP). In the pancreas, we studied the oxidative balance and SIRT-1 expression. Selenite supplementation mitigated BD-induced OS by enhancing the expression of selenoproteins, which restored oxidative balance, notably stimulating protein synthesis and normalizing the myokine profile, leading to improved SKM mass growth and metabolism, and reduced inflammation and apoptosis (caspase-3). Selenite restoration of SelP's receptor LRP1 expression, reduced by BD, outlines the crucial role of SKM in the SelP cycle, linking Se levels to SKM development. Furthermore, Se attenuated pancreatic OS, preserving insulin secretion. Se supplementation shows potential for alleviating SKM damage from BD, with additional beneficial endocrine effects on the pancreas, adipose tissue, liver, heart and brain that position it as a broad-spectrum treatment for adolescent alcohol consumption, preventing metabolic diseases in adulthood.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Suplementos Nutricionais , Músculo Esquelético , Estresse Oxidativo , Ratos Wistar , Selênio , Selenoproteínas , Animais , Ratos , Selenoproteínas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Selênio/farmacologia , Masculino , Etanol/efeitos adversos , Antioxidantes/farmacologia
13.
Reproduction ; 146(6): 659-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080144

RESUMO

Selenium (Se), an essential trace metal, is important in both growth and reproduction and is the constituent of different selenoproteins. The glutathione peroxidase (GPx) family is the most studied as it prevents oxidative stress. Liver oxidation is considered as another mechanism involved in low birth weight. Therefore, in order to ascertain whether GPx is related to the effects of Se on growth during gestation and lactation, three groups of rat pups were used: control, Se deficient (SD), and Se supplemented (SS). Morphological parameters and reproductive indices were evaluated. Hepatic Se levels were measured by graphite furnace atomic absorption while spectrophotometry was used for activity of antioxidant enzymes and oxidative stress markers in liver and western blotting for expression of hepatic GPx1 and GPx4. The SD diet increased mortality at birth; decreased viability and survival indices; and stunted growth, length, and liver development in offspring, thus decreasing hepatic Se levels, GPx, glutathione reductase, and catalase activities, while increasing superoxide dismutase activity and protein oxidation. The SS diet counteracted all the above results. GPx1 expression was heavily regulated by Se dietary intake; however, although Se dietary deficiency reduced GPx4 expression, this decrease was not as pronounced. Therefore, it can be concluded that Se dietary intake is intimately related to growth, length, and directly regulating GPx activity primarily via GPx1 and secondly to GPx4, thus affecting liver oxidation and development. These results suggest that if risk of uterine growth retardation is suspected, or if a neonate with low birth weight presents with signs of liver oxidation, it may be beneficial to know about Se status.


Assuntos
Antioxidantes/metabolismo , Glutationa Peroxidase/fisiologia , Crescimento e Desenvolvimento , Selênio/farmacologia , Animais , Feminino , Crescimento e Desenvolvimento/efeitos dos fármacos , Lactação/efeitos dos fármacos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Reprodução/efeitos dos fármacos , Selênio/deficiência
14.
J Trace Elem Med Biol ; 76: 127115, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36481604

RESUMO

Selenium is an essential mineral element with important biological functions for the whole body through incorporation into selenoproteins. This element is highly concentrated in the thyroid gland. Selenoproteins provide antioxidant protection for this tissue against the oxidative stress caused by free radicals and contribute, via iodothyronine deiodinases, to the metabolism of thyroid hormones. It is known that oxidative stress plays a major role in carcinogenesis and that in recent decades there has been an increase in the incidence of thyroid cancer. The anti-carcinogenic action of selenium, although not fully understood, is mainly attributable to selenoproteins antioxidant properties, and to the ability to modulate cell proliferation (cell cycle and apoptosis), energy metabolism, and cellular immune response, significantly altered during tumorigenesis. Researchers have suggested that different forms of selenium supplementation may be beneficial in the prevention and treatment of thyroid cancer; however, the studies have several methodological limitations. This review is a summary of the current knowledge on how selenium and selenoproteins related to thyroid cancer.


Assuntos
Selênio , Neoplasias da Glândula Tireoide , Humanos , Selênio/metabolismo , Antioxidantes , Selenoproteínas/metabolismo
15.
J Physiol Biochem ; 79(4): 799-810, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37676577

RESUMO

Binge drinking (BD) is an especially pro-oxidant model of alcohol consumption, mainly used by adolescents. It has recently been related to the hepatic IR-process. Skeletal muscle is known to be involved in insulin action and modulation through myokine secretion. However, there is no information on muscle metabolism and myokine secretion after BD exposure in adolescents. Two experimental groups of adolescent rats have been used: control and BD-exposed one. Oxidative balance, energy status and lipid, and protein metabolism have been analyzed in muscle, together with myokine serum levels (IL-6, myostatin, LIF, IL-5, fractalkine, FGF21, irisin, BDNF, FSTL1, apelin, FABP3, osteocrin, osteonectin (SPARC), and oncostatin). In muscle, BD affects the antioxidant enzyme balance leading to lipid and protein oxidation. Besides, it also increases the activation of AMPK and thus contributes to decrease SREBP1 and pmTOR and to increase FOXO3a expressions, promoting lipid and protein degradation. These alterations deeply affect the myokine secretion pattern. This is the first study to examine a general myokine response after exposure to BD. BD not only caused a detrimental imbalance in myokines related to muscle turnover, decreased those contributing to increase IR-process, decreased FST-1 and apelin and their cardioprotective function but also reduced the neuroprotective BDNF. Consequently, BD leads to an important metabolic and energetic disequilibrium in skeletal muscle, which contributes to exacerbate a general IR-process.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Fator Neurotrófico Derivado do Encéfalo , Ratos , Animais , Apelina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Músculo Esquelético/metabolismo , Etanol , Estresse Oxidativo , Lipídeos
16.
Antioxidants (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237989

RESUMO

Adolescence is a period during which body composition changes deeply. Selenium (Se) is an excellent antioxidant trace element related to cell growth and endocrine function. In adolescent rats, low Se supplementation affects adipocyte development differently depending on its form of administration (selenite or Se nanoparticles (SeNPs). Despite this effect being related to oxidative, insulin-signaling and autophagy processes, the whole mechanism is not elucidated. The microbiota-liver-bile salts secretion axis is related to lipid homeostasis and adipose tissue development. Therefore, the colonic microbiota and total bile salts homeostasis were explored in four experimental groups of male adolescent rats: control, low-sodium selenite supplementation, low SeNP supplementation and moderate SeNPs supplementation. SeNPs were obtained by reducing Se tetrachloride in the presence of ascorbic acid. Supplementation was received orally through water intake; low-Se rats received twice more Se than control animals and moderate-Se rats tenfold more. Supplementation with low doses of Se clearly affected anaerobic colonic microbiota profile and bile salts homeostasis. However, these effects were different depending on the Se administration form. Selenite supplementation primarily affected liver by decreasing farnesoid X receptor hepatic function, leading to the accumulation of hepatic bile salts together to increase in the ratio Firmicutes/Bacteroidetes and glucagon-like peptide-1 (GLP-1) secretion. In contrast, low SeNP levels mainly affected microbiota, moving them towards a more prominent Gram-negative profile in which the relative abundance of Akkermansia and Muribaculaceae was clearly enhanced and the Firmicutes/Bacteroidetes ratio decreased. This bacterial profile is directly related to lower adipose tissue mass. Moreover, low SeNP administration did not modify bile salts pool in serum circulation. In addition, specific gut microbiota was regulated upon administration of low levels of Se in the forms of selenite or SeNPs, which are properly discussed. On its side, moderate-SeNPs administration led to great dysbiosis and enhanced the abundance of pathogenic bacteria, being considered toxic. These results strongly correlate with the deep change in adipose mass previously found in these animals, indicating that the microbiota-liver-bile salts axis is also mechanistically involved in these changes.

17.
Alcohol Clin Exp Res ; 36(11): 1863-72, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22486362

RESUMO

BACKGROUND: Ethanol (EtOH) exposure during gestation and lactation induces an oxidative stress in offspring. In kidney, the oxidative damage is the primary pathway to alcohol-induced injury. In this study, we have demonstrated that a diet supplemented with selenium (Se) (0.5 ppm) or with Se (0.5 ppm) + folic acid (8 ppm) administered to EtOH-exposed (20% v/v) dams during gestation and lactation prevents the oxidative EtOH-provoked effects in their offspring's kidneys. METHODS: All the studies were performed on 21-day-old pups. Serum, urine, and kidney Se levels were assessed by graphite-furnace atomic absorption spectrometry. Se and creatinine clearance, antioxidant enzyme activities, and lipid and protein peroxidation were determined by a spectrophotometric method in kidney. RESULTS: Dietary supplementation treatments used could not improve the glomerular filtration function altered by EtOH exposure during gestation and lactation; however, they did improve renal Se deposits, renal development, and renal protein content while decreasing lipid and protein oxidation and modifying antioxidant enzymes' activity. CONCLUSIONS: Se or Se + folic acid supplementations improve renal development and protein content and modify antioxidant enzymes' activity, decreasing lipid and protein oxidation after EtOH exposure. In this context, a double-supplemented diet appears to reduce protein peroxidation more efficiently than the Se-only-supplemented one, probably via superoxide dismutase and catalase.


Assuntos
Etanol/toxicidade , Ácido Fólico/administração & dosagem , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Selênio/administração & dosagem , Animais , Animais Recém-Nascidos , Suplementos Nutricionais , Quimioterapia Combinada , Feminino , Rim/metabolismo , Lactação/efeitos dos fármacos , Lactação/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
18.
Antioxidants (Basel) ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35883893

RESUMO

Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-inflammatory and anti-apoptotic properties [...].

19.
Antioxidants (Basel) ; 11(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35204276

RESUMO

Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, as it is part of the catalytic center of 25 different selenoproteins. Some of them are related to insulin resistance (IR) and metabolic syndrome (MetS) generation, modulating reactive oxygen species (ROS), and the energetic sensor AMP-activated protein kinase (AMPK); they can also regulate the nuclear transcription factor kappa-B (NF-kB), leading to changes in inflammation production. Selenoproteins are also necessary for the correct synthesis of insulin and thyroid hormones. They are also involved in endocrine central regulation of appetite and energy homeostasis, affecting growth and development. MetS, a complex metabolic disorder, can appear during gestation and lactation in mothers, leading to energetic and metabolic changes in their offspring that, according to the metabolic programming theory, will produce cardiovascular and metabolic diseases later in life. However, there is a gap concerning Se tissue levels and selenoproteins' implications in MetS generation, which is even greater during MetS programming. This narrative review also provides an overview of the existing evidence, based on experimental research from our laboratory, which strengthens the fact that maternal MetS leads to changes in Se tissue deposits and antioxidant selenoproteins' expression in their offspring. These changes contribute to alterations in tissues' oxidative damage, inflammation, energy balance, and tissue function, mainly in the heart. Se imbalance also could modulate appetite and endocrine energy balance, affecting pups' growth and development. MetS pups present a profile similar to that of diabetes type 1, which also appeared when dams were exposed to low-Se dietary supply. Maternal Se supplementation should be taken into account if, during gestation and/or lactation periods, there are suspicions of endocrine energy imbalance in the offspring, such as MetS. It could be an interesting therapy to induce heart reprogramming. However, more studies are necessary.

20.
Life Sci ; 301: 120618, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533761

RESUMO

Binge drinking (BD) is the most common alcohol consumption model among adolescents. BD exposure during adolescence disrupts the nervous system function, being involved in the major mortality causes at this age: motor vehicle accidents, homicides and suicides. Recent studies have also shown that BD consumption during adolescence affects liver, renal and cardiovascular physiology, predisposing adolescents to future adult cardiometabolic damage. BD is a particularly pro-oxidant alcohol consumption pattern, because it leads to the production of a great source of reactive oxygen species (ROS) via the microsomal ethanol oxidizing system, also decreasing the antioxidant activity of glutathione peroxidase (GPx). Selenium (Se) is a mineral which plays a pivotal role against oxidation; it forms part of the catalytic center of different antioxidant selenoproteins such as GPxs (GPx1, GPx4, GPx3) and selenoprotein P (SelP). Specifically, GPx4 has an essential role in mitochondria, preventing their oxidation, apoptosis and NFkB-inflamative response, being this function even more relevant in heart's tissue. Se serum levels are decreased in acute and chronic alcoholic adult patients, being correlated to the severity of oxidation, liver damage and metabolic profile. Experimental studies have described that Se supplementation to alcohol exposed mice clearly decreases oxidative and liver damage. However, clinical BD effects on Se homeostasis and selenoproteins' tissue distribution related to oxidation during adolescence are not yet studied. In this narrative review we will describe the use of sodium selenite supplementation as an antioxidant therapy in adolescent BD rats in order to analyze Se homeostasis implication during BD exposure, oxidative balance, apoptosis and inflammation, mainly in liver, kidney, and heart. These biomolecular changes and the cardiovascular function will be analyzed. Se supplementation therapies could be a good strategy to prevent the oxidation, inflammation and apoptosis generated in tissues by BD during adolescence, such as liver, kidney and heart, improving cardiovascular functioning.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Doenças Cardiovasculares , Selênio , Animais , Humanos , Camundongos , Ratos , Antioxidantes/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/complicações , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Suplementos Nutricionais , Etanol/farmacologia , Glutationa Peroxidase/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Selênio/metabolismo , Selenoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA