Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(47): 7913-7928, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802657

RESUMO

Numerous rare variants that cause neurodevelopmental disorders (NDDs) occur within genes encoding synaptic proteins, including ionotropic glutamate receptors. However, in many cases, it remains unclear how damaging missense variants affect brain function. We determined the physiological consequences of an NDD causing missense mutation in the GRIK2 kainate receptor (KAR) gene, that results in a single amino acid change p.Ala657Thr in the GluK2 receptor subunit. We engineered this mutation in the mouse Grik2 gene, yielding a GluK2(A657T) mouse, and studied mice of both sexes to determine how hippocampal neuronal function is disrupted. Synaptic KAR currents in hippocampal CA3 pyramidal neurons from heterozygous A657T mice exhibited slow decay kinetics, consistent with incorporation of the mutant subunit into functional receptors. Unexpectedly, CA3 neurons demonstrated elevated action potential spiking because of downregulation of the small-conductance Ca2+ activated K+ channel (SK), which mediates the post-spike afterhyperpolarization. The reduction in SK activity resulted in increased CA3 dendritic excitability, increased EPSP-spike coupling, and lowered the threshold for the induction of LTP of the associational-commissural synapses in CA3 neurons. Pharmacological inhibition of SK channels in WT mice increased dendritic excitability and EPSP-spike coupling, mimicking the phenotype in A657T mice and suggesting a causative role for attenuated SK activity in aberrant excitability observed in the mutant mice. These findings demonstrate that a disease-associated missense mutation in GRIK2 leads to altered signaling through neuronal KARs, pleiotropic effects on neuronal and dendritic excitability, and implicate these processes in neuropathology in patients with genetic NDDs.SIGNIFICANCE STATEMENT Damaging mutations in genes encoding synaptic proteins have been identified in various neurodevelopmental disorders, but the functional consequences at the cellular and circuit level remain elusive. By generating a novel knock-in mutant mouse, this study examined the role of a pathogenic mutation in the GluK2 kainate receptor (KAR) subunit, a subclass of ionotropic glutamate receptors. Analyses of hippocampal CA3 pyramidal neurons determined elevated action potential firing because of an increase in dendritic excitability. Increased dendritic excitability was attributable to reduced activity of a Ca2+ activated K+ channel. These results indicate that a pathogenic KAR mutation results in dysregulation of dendritic K+ channels, which leads to an increase in synaptic integration and backpropagation of action potentials into distal dendrites.


Assuntos
Mutação de Sentido Incorreto , Receptores de Ácido Caínico , Masculino , Feminino , Humanos , Camundongos , Animais , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Neurônios/fisiologia , Hipocampo/fisiologia , Células Piramidais/fisiologia
2.
Am J Med Genet A ; 194(3): e63453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37870493

RESUMO

ATP1A2 encodes a subunit of sodium/potassium-transporting adenosine triphosphatase (Na+ /K+ -ATPase). Heterozygous pathogenic variants of ATP1A2 cause familial hemiplegic migraine, alternating hemiplegia of childhood, and developmental and epileptic encephalopathy. Biallelic loss-of-function variants in ATP1A2 lead to fetal akinesia, respiratory insufficiency, microcephaly, polymicrogyria, and dysmorphic facies, resulting in fetal death. Here, we describe a patient with compound heterozygous ATP1A2 variants consisting of missense and nonsense variants. He survived after birth with brain malformations and the fetal akinesia/hypokinesia sequence. We report a novel type of compound heterozygous variant that might extend the disease spectrum of ATP1A2.


Assuntos
Microcefalia , Enxaqueca com Aura , Masculino , Humanos , Hipocinesia , ATPase Trocadora de Sódio-Potássio/genética , Microcefalia/diagnóstico , Microcefalia/genética , Hemiplegia , Síndrome
3.
Mamm Genome ; 32(5): 350-363, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34086081

RESUMO

Pathogenic variants in epilepsy genes result in a spectrum of clinical severity. One source of phenotypic heterogeneity is modifier genes that affect expressivity of a primary pathogenic variant. Mouse epilepsy models also display varying degrees of clinical severity on different genetic backgrounds. Mice with heterozygous deletion of Scn1a (Scn1a+/-) model Dravet syndrome, a severe epilepsy most often caused by SCN1A haploinsufficiency. Scn1a+/- mice recapitulate features of Dravet syndrome, including spontaneous seizures, sudden death, and cognitive/behavioral deficits. Scn1a+/- mice maintained on the 129S6/SvEvTac (129) strain have normal lifespan and no spontaneous seizures. In contrast, admixture with C57BL/6J (B6) results in epilepsy and premature lethality. We previously mapped Dravet Survival Modifier loci (Dsm1-Dsm5) responsible for strain-dependent differences in survival. Gabra2, encoding the GABAA α2 subunit, was nominated as a candidate modifier at Dsm1. Direct measurement of GABAA receptors found lower abundance of α2-containing receptors in hippocampal synapses of B6 mice relative to 129. We also identified a B6-specific single nucleotide deletion within Gabra2 that lowers mRNA and protein by nearly 50%. Repair of this deletion reestablished normal levels of Gabra2 expression. In this study, we used B6 mice with a repaired Gabra2 allele to evaluate Gabra2 as a genetic modifier of severity in Scn1a+/- mice. Gabra2 repair restored transcript and protein expression, increased abundance of α2-containing GABAA receptors in hippocampal synapses, and rescued epilepsy phenotypes of Scn1a+/- mice. These findings validate Gabra2 as a genetic modifier of Dravet syndrome, and support enhancing function of α2-containing GABAA receptors as treatment strategy for Dravet syndrome.


Assuntos
Epilepsias Mioclônicas/genética , Receptores de GABA-A/genética , Animais , Epilepsias Mioclônicas/fisiopatologia , Camundongos , Polimorfismo de Nucleotídeo Único
4.
J Physiol ; 597(16): 4293-4307, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31045243

RESUMO

KEY POINTS: Dravet syndrome mice (Scn1a+/- ) demonstrate a marked strain dependence for the severity of seizures which is correlated with GABAA receptor α2 subunit expression. The α2 /α3 subunit selective positive allosteric modulator (PAM) AZD7325 potentiates inhibitory postsynaptic currents (IPSCs) specifically in perisomatic synapses. AZD7325 demonstrates stronger effects on IPSCs in the seizure resistant mouse strain, consistent with higher α2 subunit expression. AZD7325 demonstrates seizure protective effects in Scn1a+/- mice without apparent sedative effects in vivo. ABSTRACT: GABAA receptor potentiators are commonly used for the treatment of epilepsy, but it is not clear whether targeting distinct GABAA receptor subtypes will have disproportionate benefits over adverse effects. Here we demonstrate that the α2 /α3 selective positive allosteric modulator (PAM) AZD7325 preferentially potentiates hippocampal inhibitory responses at synapses proximal to the soma of CA1 neurons. The effect of AZD7325 on synaptic responses was more prominent in mice on the 129S6/SvEvTac background strain, which have been demonstrated to be seizure resistant in the model of Dravet syndrome (Scn1a+/- ), and in which the α2 GABAA receptor subunits are expressed at higher levels relative to in the seizure prone C57BL/6J background strain. Consistent with this, treatment of Scn1a+/- mice with AZD7325 elevated the temperature threshold for hyperthermia-induced seizures without apparent sedative effects. Our results in a model system indicate that selectively targeting α2 is a potential therapeutic option for Dravet syndrome.


Assuntos
Epilepsias Mioclônicas/dietoterapia , Moduladores GABAérgicos/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Receptores de GABA-A/metabolismo , Convulsões/prevenção & controle , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Epilepsias Mioclônicas/metabolismo , Febre , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Subunidades Proteicas
5.
J Neurosci ; 37(47): 11298-11310, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29038238

RESUMO

Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS.SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin signaling during early development in FXS.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Síndrome do Cromossomo X Frágil/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Receptor trkB/metabolismo , Animais , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Interneurônios/citologia , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor trkB/agonistas , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/fisiologia
6.
J Neurosci ; 35(16): 6544-53, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904804

RESUMO

Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2(-/-) mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2(-/-) mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus.


Assuntos
Região CA3 Hipocampal/fisiologia , AMP Cíclico/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Transmissão Sináptica/fisiologia , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Colforsina/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Knockout , Fibras Musgosas Hipocampais/efeitos dos fármacos , Fibras Musgosas Hipocampais/fisiologia , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/efeitos dos fármacos
7.
J Neurosci ; 34(2): 446-50, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24403144

RESUMO

Delays in synaptic and neuronal development in the cortex are key hallmarks of fragile X syndrome, a prevalent neurodevelopmental disorder that causes intellectual disability and sensory deficits and is the most common known cause of autism. Previous studies have demonstrated that the normal progression of plasticity and synaptic refinement during the critical period is altered in the cortex of fragile X mice. Although the disruptions in excitatory synapses are well documented in fragile X, there is less known about inhibitory neurotransmission during the critical period. GABAergic transmission plays a crucial trophic role in cortical development through its early depolarizing action. At the end of cortical critical period, response properties of GABA transform into their mature hyperpolarizing type due to developmental changes in intracellular chloride homeostasis. We found that the timing of the switch from depolarizing to hyperpolarizing GABA is delayed in the cortex of fragile X mice and there is a concurrent alteration in the expression of the neuronal chloride cotransporter NKCC1 that promotes the accumulation of intracellular chloride. Disruption of the trophic effects of GABA during cortical development could contribute to the altered trajectory of synaptic maturation in fragile X syndrome.


Assuntos
Síndrome do Cromossomo X Frágil/metabolismo , Neurogênese/fisiologia , Córtex Somatossensorial/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Western Blotting , Período Crítico Psicológico , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
8.
J Neurosci ; 34(50): 16762-73, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25505329

RESUMO

Metaplasticity regulates the threshold for modification of synaptic strength and is an important regulator of learning rules; however, it is not known whether these cellular mechanisms for homeostatic regulation of synapses contribute to particular forms of learning. Conditional ablation of mGluR5 in CA1 pyramidal neurons resulted in the inability of low-frequency trains of afferent activation to prime synapses for subsequent theta burst potentiation. Priming-induced metaplasticity requires mGluR5-mediated mobilization of endocannabinoids during the priming train to induce long-term depression of inhibition (I-LTD). Mice lacking priming-induced plasticity had no deficit in spatial reference memory tasks, but were impaired in an associative task with a temporal component. Conversely, enhancing endocannabinoid signaling facilitated temporal associative memory acquisition and, after training animals in these tasks, ex vivo I-LTD was partially occluded and theta burst LTP was enhanced. Together, these results suggest a link between metaplasticity mechanisms in the hippocampus and the formation of temporal associative memories.


Assuntos
Aprendizagem por Associação/fisiologia , Região CA1 Hipocampal/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Animais , Feminino , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Fatores de Tempo
9.
Learn Mem ; 20(8): 438-45, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23869026

RESUMO

Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5 signaling is required for different forms of adaptive learning. Here, we tested whether ADX47273, a selective positive allosteric modulator (PAM) of mGluR5, can enhance adaptive learning in mice. We found that systemic administration of the ADX47273 enhanced reversal learning in the Morris Water Maze, an adaptive task. In addition, we found that ADX47273 had no effect on single-session and multi-session extinction, but administration of ADX47273 after a single retrieval trial enhanced subsequent fear extinction learning. Together these results demonstrate a role for mGluR5 signaling in adaptive learning, and suggest that mGluR5 PAMs represent a viable strategy for treatment of maladaptive learning and for improving behavioral flexibility.


Assuntos
Adaptação Psicológica/fisiologia , Extinção Psicológica/fisiologia , Aprendizagem em Labirinto/fisiologia , Oxidiazóis/farmacologia , Piperidinas/farmacologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Adaptação Psicológica/efeitos dos fármacos , Animais , Extinção Psicológica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos
10.
Methods Mol Biol ; 2794: 221-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630233

RESUMO

The patch-clamp technique is one of the most useful tools to analyze the function of electrically active cells such as neurons. This technique allows for the analysis of proteins (ion channels and receptors), cells (neurons), and synapses that are the building blocks of neuronal networks. Cortical development involves coordinated changes in functional measures at each of these levels of analysis that reflect both cellular and circuit maturation. This chapter explains the technical and theoretical basis of patch-clamp methodology and introduces several examples of how this technique can be applied in the context of cortical development.


Assuntos
Eletricidade , Neurônios , Técnicas de Patch-Clamp , Sinapses
11.
Biol Psychiatry ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950809

RESUMO

BACKGROUND: Exaggerated responses to sensory stimuli, a hallmark of Fragile X syndrome (FXS), contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of FXS. Recent studies in Fmr1 KO mice have demonstrated differences in activity of cortical interneurons and a delayed switch in the polarity of GABA signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide, could rescue synaptic circuit phenotypes in primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS: We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS: We demonstrate that layer (L) 2/3 pyramidal neurons in S1 of Fmr1 KO mice show a higher frequency of synchronous events at postnatal day (P) 6 compared to wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (P5-P14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of L2/3 neurons in S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS: This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the FDA-approved diuretic bumetanide.

12.
Nat Commun ; 14(1): 7006, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938579

RESUMO

Quantum oscillation phenomenon is an essential tool to understand the electronic structure of quantum matter. Here we report a systematic study of quantum oscillations in the electronic specific heat Cel in natural graphite. We show that the crossing of a single spin Landau level and the Fermi energy give rise to a double-peak structure, in striking contrast to the single peak expected from Lifshitz-Kosevich theory. Intriguingly, the double-peak structure is predicted by the kernel term for Cel/T in the free electron theory. The Cel/T represents a spectroscopic tuning fork of width 4.8kBT which can be tuned at will to resonance. Using a coincidence method, the double-peak structure can be used to accurately determine the Landé g-factors of quantum materials. More generally, the tuning fork can be used to reveal any peak in fermionic density of states tuned by magnetic field, such as Lifshitz transition in heavy-fermion compounds.

13.
Eur J Neurosci ; 36(7): 2867-76, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22775058

RESUMO

Cerebellar Purkinje cells, which convey the only output from the cerebellar cortex, play an essential role in cerebellar functions, such as motor coordination and motor learning. To understand how Purkinje cells develop and function in the mature cerebellum, an efficient method for molecularly perturbing them is needed. Here we demonstrate that Purkinje cell progenitors at embryonic day (E)11.5 could be efficiently and preferentially transfected by spatially directed in utero electroporation (IUE) with an optimized arrangement of electrodes. Electrophysiological analyses indicated that the electroporated Purkinje cells maintained normal membrane properties, synaptic responses and synaptic plasticity at postnatal days 25-28. By combining the L7 promoter and inducible Cre/loxP system with IUE, transgenes were expressed even more specifically in Purkinje cells and in a temporally controlled manner. We also show that three different fluorescent proteins could be simultaneously expressed, and that Bassoon, a large synaptic protein, could be expressed in the electroporated Purkinje cells. Moreover, phenotypes of staggerer mutant mice, which have a deletion in the gene encoding retinoid-related orphan receptor α (RORα1), were recapitulated by electroporating a dominant-negative form of RORα1 into Purkinje cells at E11.5. Together, these results indicate that this new IUE protocol, which allows the selective, effective and temporally regulated expression of multiple foreign genes transfected into Purkinje cell progenitors in vivo, without changing the cells' physiological characteristics, is a powerful tool for elucidating the molecular mechanisms underlying early Purkinje cell developmental events, such as dendritogenesis and migration, and synaptic plasticity in mature Purkinje cells.


Assuntos
Eletroporação/métodos , Regulação da Expressão Gênica no Desenvolvimento , Células de Purkinje/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Feminino , Vetores Genéticos/genética , Potenciais da Membrana/genética , Camundongos , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Gravidez , Regiões Promotoras Genéticas/genética , Células de Purkinje/fisiologia , Transmissão Sináptica/genética , Transfecção , Transgenes/genética
14.
Eur J Neurosci ; 35(3): 402-10, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22239345

RESUMO

Cerebellar long-term depression (LTD) at parallel fiber (PF)-Purkinje cell synapses is thought to play an essential role in certain forms of motor learning. Like hippocampal LTD, cerebellar LTD is mediated by the endocytosis of AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) receptors at postsynaptic sites. However, similar sets of kinases and phosphatases have opposite regulatory effects on hippocampal and cerebellar LTD, although the mechanisms responsible for this difference remain largely unclear. Activity-dependent dephosphorylation of stargazin (an AMPA receptor auxiliary protein) by calcineurin regulates hippocampal LTD, but whether and how stargazin is involved in cerebellar LTD is unknown. In this study, we showed that stargazin is highly phosphorylated at basal states and is dephosphorylated by the application of high KCl plus glutamate (K-glu) or of a metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine (DHPG), both of which chemically induced LTD in cerebellar slices. This chemically induced dephosphorylation of stargazin was specifically blocked by a calcineurin inhibitor. Indeed, inclusion of the calcineurin auto-inhibitory peptide in the patch pipette solution completely inhibited the LTD induced by the conjunctive stimulation of PFs and Purkinje cells. Furthermore, in Purkinje cells expressing stargazin-9D, in which all nine serine residues are mutated to aspartate, neither conjunctive stimulus nor DHPG treatment induced LTD. Finally, immunohistochemical analyses revealed that neither K-glu nor DHPG induced the endocytosis of AMPA receptors in Purkinje cells expressing stargazin-9D. Together, these results indicate that hippocampal and cerebellar LTD share a common pathway, namely dephosphorylation of stargazin by calcineurin.


Assuntos
Canais de Cálcio/metabolismo , Cerebelo/citologia , Cerebelo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Células de Purkinje/fisiologia , Calcineurina/metabolismo , Canais de Cálcio/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas de Patch-Clamp , Fosforilação , Receptores de AMPA/metabolismo
15.
Nat Commun ; 13(1): 5590, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192393

RESUMO

Exotic superconductivity is formed by unconventional electron pairing and exhibits various unique properties that cannot be explained by the basic theory. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is known as an exotic superconducting state in that the electron pairs have a finite center-of-mass momentum leading to a spatially modulated pattern of superconductivity. The spatial modulation endows the FFLO state with emergent anisotropy. However, the anisotropy has never been experimentally verified despite numerous efforts over the years. Here, we report detection of anisotropic acoustic responses depending on the sound propagation direction appearing above the Pauli limit. This anisotropy reveals that the two-dimensional FFLO state has a center-of-mass momentum parallel to the nesting vector on the Fermi surface. The present findings will facilitate our understanding of not only superconductivity in solids but also exotic pairings of various particles.

16.
Cells ; 10(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34685590

RESUMO

The alteration of excitatory-inhibitory (E-I) balance has been implicated in various neurological and psychiatric diseases, including autism spectrum disorder (ASD). Fragile X syndrome (FXS) is a single-gene disorder that is the most common known cause of ASD. Understanding the molecular and physiological features of FXS is thought to enhance our knowledge of the pathophysiology of ASD. Accumulated evidence implicates deficits in the inhibitory circuits in FXS that tips E-I balance toward excitation. Deficits in interneurons, the main source of an inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), have been reported in FXS, including a reduced number of cells, reduction in intrinsic cellular excitability, or weaker synaptic connectivity. Manipulating the interneuron activity ameliorated the symptoms in the FXS mouse model, which makes it reasonable to conceptualize FXS as an interneuronopathy. While it is still poorly understood how the developmental profiles of the inhibitory circuit go awry in FXS, recent works have uncovered several developmental alterations in the functional properties of interneurons. Correcting disrupted E-I balance by potentiating the inhibitory circuit by targeting interneurons may have a therapeutic potential in FXS. I will review the recent evidence about the inhibitory alterations and interneuron dysfunction in ASD and FXS and will discuss the future directions of this field.


Assuntos
Transtorno Autístico , Síndrome do Cromossomo X Frágil , Interneurônios/patologia , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Humanos
17.
Behav Brain Res ; 411: 113378, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34029630

RESUMO

Autism is a neurodevelopmental disorder characterized by impaired social interactions and restricted and repetitive behaviors. Although group 1 metabotropic glutamate receptors (mGluRs), and in particular mGluR5, have been extensively proposed as potential targets for intervention in autism and other neurodevelopmental disorders, there has not been a comprehensive analysis of the effect of mGluR5 loss on behaviors typically assessed in autism mouse models thought to be correlates of behavioral symptoms of human disorders. Here we present a behavioral characterization of mice with complete or partial loss of mGluR5 (homozygous or heterozygous null mutations in Grm5 gene). We tested several autism related behaviors including social interaction, repetitive grooming, digging and locomotor behaviors. We found that digging and marble burying behaviors were almost completely abolished in mGluR5 ko mice, although self-grooming was not altered. Social interaction was impaired in ko but not in heterozygote (het) mice. In tests of locomotor activity and anxiety related behaviors, mGluR5 ko mice exhibited hyperactivity and reduced anxiety in the open field test but unexpectedly, showed hypoactivity in the elevated zero-maze test. There was no impairment in motor learning in the accelerating rotarod in both ko and het mutant. Together these results provide support for the importance of mGluR5 in motor and social behaviors that are specifically affected in autism disorders.


Assuntos
Transtorno do Espectro Autista/genética , Atividade Motora/genética , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Ansiedade/genética , Ansiedade/fisiopatologia , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Comportamento Social , Comportamento Estereotipado
18.
Cell Syst ; 12(2): 141-158.e9, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33326751

RESUMO

Compromised protein homeostasis underlies accumulation of plaques and tangles in Alzheimer's disease (AD). To observe protein turnover at early stages of amyloid beta (Aß) proteotoxicity, we performed pulse-chase proteomics on mouse brains in three genetic models of AD that knock in alleles of amyloid precursor protein (APP) prior to the accumulation of plaques and during disease progression. At initial stages of Aß accumulation, the turnover of proteins associated with presynaptic terminals is selectively impaired. Presynaptic proteins with impaired turnover, particularly synaptic vesicle (SV)-associated proteins, have elevated levels, misfold in both a plaque-dependent and -independent manner, and interact with APP and Aß. Concurrent with elevated levels of SV-associated proteins, we found an enlargement of the SV pool as well as enhancement of presynaptic potentiation. Together, our findings reveal that the presynaptic terminal is particularly vulnerable and represents a critical site for manifestation of initial AD etiology. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Doença de Alzheimer/genética , Terminações Pré-Sinápticas/metabolismo , Proteômica/métodos , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
19.
Cell Rep ; 30(10): 3520-3535.e7, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160554

RESUMO

BIN1, a member of the BAR adaptor protein family, is a significant late-onset Alzheimer disease risk factor. Here, we investigate BIN1 function in the brain using conditional knockout (cKO) models. Loss of neuronal Bin1 expression results in the select impairment of spatial learning and memory. Examination of hippocampal CA1 excitatory synapses reveals a deficit in presynaptic release probability and slower depletion of neurotransmitters during repetitive stimulation, suggesting altered vesicle dynamics in Bin1 cKO mice. Super-resolution and immunoelectron microscopy localizes BIN1 to presynaptic sites in excitatory synapses. Bin1 cKO significantly reduces synapse density and alters presynaptic active zone protein cluster formation. Finally, 3D electron microscopy reconstruction analysis uncovers a significant increase in docked and reserve pools of synaptic vesicles at hippocampal synapses in Bin1 cKO mice. Our results demonstrate a non-redundant role for BIN1 in presynaptic regulation, thus providing significant insights into the fundamental function of BIN1 in synaptic physiology relevant to Alzheimer disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Consolidação da Memória , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Encéfalo/metabolismo , Potenciais Pós-Sinápticos Excitadores , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Reconhecimento Psicológico , Proteínas SNARE/metabolismo , Aprendizagem Espacial
20.
Brain Dev ; 41(7): 630-633, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30898343

RESUMO

BACKGROUND: Spinocerebellar ataxia type 5 (SCA5), a dominant spinocerebellar ataxia is caused by spectrin beta nonerythrocytic 2 gene (SPTBN2) mutation. It typically consists of a slow progressive cerebellar ataxia with an onset principally in adulthood. Here, we report on the first Japanese patient with infantile-onset SCA5 associated with a novel heterozygous SPTBN2 mutation. CASE REPORT: The patient, a 6-year-old girl, developed delayed motor development and unsteady arm movement during infancy. She also showed gaze-evoked nystagmus, saccadic eye pursuit, dysarthria, dysmetria, intention tremor and mild intellectual disability. Brain MRI revealed moderate cerebellar atrophy and mild pontine atrophy. Comprehensive target capture sequencing to identify the causative gene identified a novel missense mutation in SPTBN2 (c.1309C

Assuntos
Espectrina/genética , Ataxias Espinocerebelares/genética , Degenerações Espinocerebelares/genética , Criança , Feminino , Humanos , Japão , Imageamento por Ressonância Magnética , Mutação , Mutação de Sentido Incorreto , Espectrina/metabolismo , Ataxias Espinocerebelares/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA