RESUMO
Crystalline and liquid-crystalline conjugated small molecules represent a promising family of semiconductor materials for organic electronics applications. The control of the morphology and optoelectronic properties of small molecules allows tuning their charge transport characteristics and hence, improving the performance of electronic devices. Here, we designed four pentamers based on alternating thiophene and benzothiadiazole moieties and investigated the effect of their structure on the optoelectronic properties, ordering and charge transport characteristics. It is shown that thermal annealing of conjugated pentamers leads to remarkable changes in the microstructure and domain texture of thin films. As a result, an increase in hole mobility for compound M4 by one order of magnitude was achieved. These findings provide a valuable insight into the structure-property relationships for designed small molecules featuring them as promising semiconductor materials for further developing high-performance organic electronics.
RESUMO
Perovskite solar cells (PSCs) currently reach high efficiencies, while their insufficient stability remains an obstacle to their technological commercialization. The introduction of hole-transport materials (HTMs) into the device structure is a key approach for enhancing the efficiency and stability of devices. However, currently, the influence of the HTM structure or properties on the characteristics and operational stability of PSCs remains insufficiently studied. Herein, we present four novel push-pull small molecules, H1-4, with alternating thiophene and benzothiadiazole or fluorine-loaded benzothiadiazole units, which contain branched and linear alkyl chains in the different positions of terminal thiophenes to evaluate the impact of HTM structure on PSC performance. It is demonstrated that minor changes in the structure of HTMs significantly influence their behavior in thin films. In particular, H3 organizes into highly ordered lamellar structures in thin films, which proves to be crucial in boosting the efficiency and stability of PSCs. The presented results shed light on the crucial role of the HTM structure and the morphology of films in the performance of PSCs.
Assuntos
Energia Solar , Tiofenos/química , HalogenaçãoRESUMO
Recent studies have shown that charge transport interlayers with low gas permeability can increase the operational lifetime of perovskite solar cells serving as a barrier for migration of volatile decomposition products from the photoactive layer. Herein we present a hybrid hole transport layer (HTL) comprised of p-type polytriarylamine (PTAA) polymer and vanadium(V) oxide (VOx). Devices with PTAA/VOx top HTL reach up to 20% efficiency and demonstrate negligible degradation after 4500 h of light soaking, whereas reference cells using PTAA/MoOx as HTL lose â¼50% of their initial efficiency under the same aging conditions. It was shown that the main origin of the enhanced device stability lies in the higher tolerance of VOx toward MAPbI3 compared to the MoOx interlayer, which tends to facilitate perovskite decomposition. Our results demonstrate that the application of PTAA/VOx hybrid HTL enables long-term operational stability of perovskite solar cells, thus bringing them closer to commercial applications.