Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Comput Biol ; 16(5): e1007890, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453720

RESUMO

The biconcave disk shape of the mammalian red blood cell (RBC) is unique to the RBC and is vital for its circulatory function. Due to the absence of a transcellular cytoskeleton, RBC shape is determined by the membrane skeleton, a network of actin filaments cross-linked by spectrin and attached to membrane proteins. While the physical properties of a uniformly distributed actin network interacting with the lipid bilayer membrane have been assumed to control RBC shape, recent experiments reveal that RBC biconcave shape also depends on the contractile activity of nonmuscle myosin IIA (NMIIA) motor proteins. Here, we use the classical Helfrich-Canham model for the RBC membrane to test the role of heterogeneous force distributions along the membrane and mimic the contractile activity of sparsely distributed NMIIA filaments. By incorporating this additional contribution to the Helfrich-Canham energy, we find that the RBC biconcave shape depends on the ratio of forces per unit volume in the dimple and rim regions of the RBC. Experimental measurements of NMIIA densities at the dimple and rim validate our prediction that (a) membrane forces must be non-uniform along the RBC membrane and (b) the force density must be larger in the dimple than the rim to produce the observed membrane curvatures. Furthermore, we predict that RBC membrane tension and the orientation of the applied forces play important roles in regulating this force-shape landscape. Our findings of heterogeneous force distributions on the plasma membrane for RBC shape maintenance may also have implications for shape maintenance in different cell types.


Assuntos
Deformação Eritrocítica , Membrana Eritrocítica/fisiologia , Eritrócitos/citologia , Miosinas/química , Citoesqueleto de Actina/química , Reagentes de Ligações Cruzadas/química , Glicoforinas/química , Humanos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Microscopia de Fluorescência , Cadeias Pesadas de Miosina/química , Faloidina/química , Rodaminas/química , Estresse Mecânico
2.
Proc Natl Acad Sci U S A ; 115(19): E4377-E4385, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29610350

RESUMO

The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.


Assuntos
Actinas/metabolismo , Forma Celular/fisiologia , Membrana Eritrocítica/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Trifosfato de Adenosina/metabolismo , Forma Celular/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos
3.
J Cell Sci ; 131(23)2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30333143

RESUMO

Tropomyosins (Tpms) stabilize F-actin and regulate interactions with other actin-binding proteins. The eye lens changes shape in order to focus light to transmit a clear image, and thus lens organ function is tied to its biomechanical properties, presenting an opportunity to study Tpm functions in tissue mechanics. Mouse lenses contain Tpm3.5 (also known as TM5NM5), a previously unstudied isoform encoded by Tpm3, which is associated with F-actin on lens fiber cell membranes. Decreased levels of Tpm3.5 lead to softer and less mechanically resilient lenses that are unable to resume their original shape after compression. While cell organization and morphology appear unaffected, Tmod1 dissociates from the membrane in Tpm3.5-deficient lens fiber cells resulting in reorganization of the spectrin-F-actin and α-actinin-F-actin networks at the membrane. These rearranged F-actin networks appear to be less able to support mechanical load and resilience, leading to an overall change in tissue mechanical properties. This is the first in vivo evidence that a Tpm protein is essential for cell biomechanical stability in a load-bearing non-muscle tissue, and indicates that Tpm3.5 protects mechanically stable, load-bearing F-actin in vivoThis article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas/metabolismo , Cristalino/metabolismo , Tropomiosina/metabolismo , Animais , Diferenciação Celular , Camundongos
4.
Proc Natl Acad Sci U S A ; 114(45): 11956-11961, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078393

RESUMO

Small heat shock protein HSPB7 is highly expressed in the heart. Several mutations within HSPB7 are associated with dilated cardiomyopathy and heart failure in human patients. However, the precise role of HSPB7 in the heart is still unclear. In this study, we generated global as well as cardiac-specific HSPB7 KO mouse models and found that loss of HSPB7 globally or specifically in cardiomyocytes resulted in embryonic lethality before embryonic day 12.5. Using biochemical and cell culture assays, we identified HSPB7 as an actin filament length regulator that repressed actin polymerization by binding to monomeric actin. Consistent with HSPB7's inhibitory effects on actin polymerization, HSPB7 KO mice had longer actin/thin filaments and developed abnormal actin filament bundles within sarcomeres that interconnected Z lines and were cross-linked by α-actinin. In addition, loss of HSPB7 resulted in up-regulation of Lmod2 expression and mislocalization of Tmod1. Furthermore, crossing HSPB7 null mice into an Lmod2 null background rescued the elongated thin filament phenotype of HSPB7 KOs, but double KO mice still exhibited formation of abnormal actin bundles and early embryonic lethality. These in vivo findings indicated that abnormal actin bundles, not elongated thin filament length, were the cause of embryonic lethality in HSPB7 KOs. Our findings showed an unsuspected and critical role for a specific small heat shock protein in directly modulating actin thin filament length in cardiac muscle by binding monomeric actin and limiting its availability for polymerization.


Assuntos
Citoesqueleto de Actina/metabolismo , Cardiomiopatias/genética , Proteínas de Choque Térmico HSP27/genética , Cardiopatias Congênitas/genética , Coração/embriologia , Citoesqueleto de Actina/genética , Animais , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Miocárdio/citologia , Miócitos Cardíacos/citologia , Organogênese/genética , Sarcômeros/metabolismo , Tropomodulina/metabolismo
5.
Blood ; 130(9): 1144-1155, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28729432

RESUMO

Biogenesis of mammalian red blood cells requires nuclear expulsion by orthochromatic erythoblasts late in terminal differentiation (enucleation), but the mechanism is largely unexplained. Here, we employed high-resolution confocal microscopy to analyze nuclear morphology and F-actin rearrangements during the initiation, progression, and completion of mouse and human erythroblast enucleation in vivo. Mouse erythroblast nuclei acquire a dumbbell-shaped morphology during enucleation, whereas human bone marrow erythroblast nuclei unexpectedly retain their spherical morphology. These morphological differences are linked to differential expression of Lamin isoforms, with primary mouse erythroblasts expressing only Lamin B and primary human erythroblasts only Lamin A/C. We did not consistently identify a continuous F-actin ring at the cell surface constriction in mouse erythroblasts, nor at the membrane protein-sorting boundary in human erythroblasts, which do not have a constriction, arguing against a contractile ring-based nuclear expulsion mechanism. However, both mouse and human erythroblasts contain an F-actin structure at the rear of the translocating nucleus, enriched in tropomodulin 1 (Tmod1) and nonmuscle myosin IIB. We investigated Tmod1 function in mouse and human erythroblasts both in vivo and in vitro and found that absence of Tmod1 leads to enucleation defects in mouse fetal liver erythroblasts, and in CD34+ hematopoietic stem and progenitor cells, with increased F-actin in the structure at the rear of the nucleus. This novel structure, the "enucleosome," may mediate common cytoskeletal mechanisms underlying erythroblast enucleation, notwithstanding the morphological heterogeneity of enucleation across species.


Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Eritroblastos/metabolismo , Tropomodulina/metabolismo , Animais , Medula Óssea/metabolismo , Diferenciação Celular , Forma do Núcleo Celular , Polaridade Celular , Feto/metabolismo , Técnicas de Silenciamento de Genes , Laminas/metabolismo , Fígado/embriologia , Camundongos Endogâmicos C57BL , Miosina não Muscular Tipo IIB/metabolismo , Isoformas de Proteínas/metabolismo
6.
Am J Hematol ; 94(6): 667-677, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916803

RESUMO

MYH9-related disease (MYH9-RD) is a rare, autosomal dominant disorder caused by mutations in MYH9, the gene encoding the actin-activated motor protein non-muscle myosin IIA (NMIIA). MYH9-RD patients suffer from bleeding syndromes, progressive kidney disease, deafness, and/or cataracts, but the impact of MYH9 mutations on other NMIIA-expressing tissues remains unknown. In human red blood cells (RBCs), NMIIA assembles into bipolar filaments and binds to actin filaments (F-actin) in the spectrin-F-actin membrane skeleton to control RBC biconcave disk shape and deformability. Here, we tested the effects of MYH9 mutations in different NMIIA domains (motor, coiled-coil rod, or non-helical tail) on RBC NMIIA function. We found that MYH9-RD does not cause clinically significant anemia and that patient RBCs have normal osmotic deformability as well as normal membrane skeleton composition and micron-scale distribution. However, analysis of complete blood count data and peripheral blood smears revealed reduced hemoglobin content and elongated shapes, respectively, of MYH9-RD RBCs. Patients with mutations in the NMIIA motor domain had the highest numbers of elongated RBCs. Patients with mutations in the motor domain also had elevated association of NMIIA with F-actin at the RBC membrane. Our findings support a central role for motor domain activity in NMIIA regulation of RBC shape and define a new sub-clinical phenotype of MYH9-RD.


Assuntos
Actinas , Membrana Eritrocítica , Eritrócitos Anormais , Perda Auditiva Neurossensorial , Mutação , Cadeias Pesadas de Miosina , Trombocitopenia/congênito , Actinas/genética , Actinas/metabolismo , Membrana Eritrocítica/genética , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/patologia , Eritrócitos Anormais/metabolismo , Eritrócitos Anormais/patologia , Feminino , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia
7.
Blood ; 126(4): 520-30, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25964668

RESUMO

The actin cytoskeleton is important for platelet biogenesis. Tropomodulin-3 (Tmod3), the only Tmod isoform detected in platelets and megakaryocytes (MKs), caps actin filament (F-actin) pointed ends and binds tropomyosins (TMs), regulating actin polymerization and stability. To determine the function of Tmod3 in platelet biogenesis, we studied Tmod3(-/-) embryos, which are embryonic lethal by E18.5. Tmod3(-/-) embryos often show hemorrhaging at E14.5 with fewer and larger platelets, indicating impaired platelet biogenesis. MK numbers are moderately increased in Tmod3(-/-) fetal livers, with only a slight increase in the 8N population, suggesting that MK differentiation is not significantly affected. However, Tmod3(-/-) MKs fail to develop a normal demarcation membrane system (DMS), and cytoplasmic organelle distribution is abnormal. Moreover, cultured Tmod3(-/-) MKs exhibit impaired proplatelet formation with a wide range of proplatelet bud sizes, including abnormally large proplatelet buds containing incorrect numbers of von Willebrand factor-positive granules. Tmod3(-/-) MKs exhibit F-actin disturbances, and Tmod3(-/-) MKs spreading on collagen fail to polymerize F-actin into actomyosin contractile bundles. Tmod3 associates with TM4 and the F-actin cytoskeleton in wild-type MKs, and confocal microscopy reveals that Tmod3, TM4, and F-actin partially colocalize near the membrane of proplatelet buds. In contrast, the abnormally large proplatelets from Tmod3(-/-) MKs show increased F-actin and redistribution of F-actin and TM4 from the cortex to the cytoplasm, but normal microtubule coil organization. We conclude that F-actin capping by Tmod3 regulates F-actin organization in mouse fetal liver-derived MKs, thereby controlling MK cytoplasmic morphogenesis, including DMS formation and organelle distribution, as well as proplatelet formation and sizing.


Assuntos
Citoesqueleto de Actina/patologia , Plaquetas/patologia , Membrana Celular/patologia , Embrião de Mamíferos/patologia , Hemorragia/etiologia , Megacariócitos/patologia , Tropomodulina/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Apoptose , Plaquetas/metabolismo , Western Blotting , Membrana Celular/metabolismo , Proliferação de Células , Células Cultivadas , Citoplasma/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Imunofluorescência , Hematopoese/fisiologia , Hemorragia/metabolismo , Hemorragia/patologia , Imunoprecipitação , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Ploidias , Polimerização
8.
Exp Eye Res ; 156: 58-71, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26971460

RESUMO

The eye lens is a transparent and avascular organ in the front of the eye that is responsible for focusing light onto the retina in order to transmit a clear image. A monolayer of epithelial cells covers the anterior hemisphere of the lens, and the bulk of the lens is made up of elongated and differentiated fiber cells. Lens fiber cells are very long and thin cells that are supported by sophisticated cytoskeletal networks, including actin filaments at cell junctions and the spectrin-actin network of the membrane skeleton. In this review, we highlight the proteins that regulate diverse actin filament networks in the lens and discuss how these actin cytoskeletal structures assemble and function in epithelial and fiber cells. We then discuss methods that have been used to study actin in the lens and unanswered questions that can be addressed with novel techniques.


Assuntos
Citoesqueleto de Actina/fisiologia , Cristalino/embriologia , Animais , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Humanos , Cristalino/citologia , Cristalino/crescimento & desenvolvimento , Proteínas dos Microfilamentos/metabolismo
9.
Blood ; 123(5): 758-67, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24159174

RESUMO

Tropomodulin (Tmod) is a protein that binds and caps the pointed ends of actin filaments in erythroid and nonerythoid cell types. Targeted deletion of mouse tropomodulin3 (Tmod3) leads to embryonic lethality at E14.5-E18.5, with anemia due to defects in definitive erythropoiesis in the fetal liver. Erythroid burst-forming unit and colony-forming unit numbers are greatly reduced, indicating defects in progenitor populations. Flow cytometry of fetal liver erythroblasts shows that late-stage populations are also decreased, including reduced percentages of enucleated cells. Annexin V staining indicates increased apoptosis of Tmod3(-/-) erythroblasts, and cell-cycle analysis reveals that there are more Ter119(hi) cells in S-phase in Tmod3(-/-) embryos. Notably, enucleating Tmod3(-/-) erythroblasts are still in the process of proliferation, suggesting impaired cell-cycle exit during terminal differentiation. Tmod3(-/-) late erythroblasts often exhibit multilobular nuclear morphologies and aberrant F-actin assembly during enucleation. Furthermore, native erythroblastic island formation was impaired in Tmod3(-/-) fetal livers, with Tmod3 required in both erythroblasts and macrophages. In conclusion, disruption of Tmod3 leads to impaired definitive erythropoiesis due to reduced progenitors, impaired erythroblastic island formation, and defective erythroblast cell-cycle progression and enucleation. Tmod3-mediated actin remodeling may be required for erythroblast-macrophage adhesion, coordination of cell cycle with differentiation, and F-actin assembly and remodeling during erythroblast enucleation.


Assuntos
Células Precursoras Eritroides/metabolismo , Deleção de Genes , Fígado/embriologia , Tropomodulina/genética , Animais , Apoptose , Ciclo Celular , Eritroblastos/citologia , Eritroblastos/metabolismo , Células Precursoras Eritroides/citologia , Eritropoese , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout
10.
Am J Physiol Cell Physiol ; 308(10): C835-47, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25740157

RESUMO

The eye lens consists of layers of tightly packed fiber cells, forming a transparent and avascular organ that is important for focusing light onto the retina. A microcirculation system, facilitated by a network of gap junction channels composed of connexins 46 and 50 (Cx46 and Cx50), is hypothesized to maintain and nourish lens fiber cells. We measured lens impedance in mice lacking tropomodulin 1 (Tmod1, an actin pointed-end capping protein), CP49 (a lens-specific intermediate filament protein), or both Tmod1 and CP49. We were surprised to find that simultaneous loss of Tmod1 and CP49, which disrupts cytoskeletal networks in lens fiber cells, results in increased gap junction coupling resistance, hydrostatic pressure, and sodium concentration. Protein levels of Cx46 and Cx50 in Tmod1(-/-);CP49(-/-) double-knockout (DKO) lenses were unchanged, and electron microscopy revealed normal gap junctions. However, immunostaining and quantitative analysis of three-dimensional confocal images showed that Cx46 gap junction plaques are smaller and more dispersed in DKO differentiating fiber cells. The localization and sizes of Cx50 gap junction plaques in DKO fibers were unaffected, suggesting that Cx46 and Cx50 form homomeric channels. We also demonstrate that gap junction plaques rest in lacunae of the membrane-associated actin-spectrin network, suggesting that disruption of the actin-spectrin network in DKO fibers may interfere with gap junction plaque accretion into micrometer-sized domains or alter the stability of large plaques. This is the first work to reveal that normal gap junction plaque localization and size are associated with normal lens coupling conductance.


Assuntos
Conexinas/metabolismo , Junções Comunicantes/metabolismo , Homeostase/fisiologia , Cristalino/citologia , Cristalino/metabolismo , Animais , Diferenciação Celular , Citoesqueleto/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Canais Iônicos/metabolismo , Camundongos Knockout , Camundongos Transgênicos
11.
Dev Dyn ; 243(6): 800-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24500875

RESUMO

BACKGROUND: We explored a function for tropomyosin (TM) in mammalian myofibril assembly and cardiac development by analyzing a deletion in the mouse TPM1 gene targeting αTM1, the major striated muscle TM isoform. RESULTS: Mice lacking αTM1 are embryonic lethal at E9.5 with enlarged, misshapen, and non-beating hearts characterized by an abnormally thin myocardium and reduced trabeculae. αTM1-deficient cardiomyocytes do not assemble striated myofibrils, instead displaying aberrant non-striated F-actin fibrils with α-actinin puncta dispersed irregularly along their lengths. αTM1's binding partner, tropomodulin1 (Tmod1), is also disorganized, and both myomesin-containing thick filaments as well as titin Z1Z2 fail to assemble in a striated pattern. Adherens junctions are reduced in size in αTM1-deficient cardiomyocytes, α-actinin/F-actin adherens belts fail to assemble at apical cell-cell contacts, and cell contours are highly irregular, resulting in abnormal cell shapes and a highly folded cardiac surface. In addition, Tmod1-deficient cardiomyocytes exhibit failure of α-actinin/F-actin adherens belt assembly. CONCLUSIONS: Absence of αTM1 resulting in unstable F-actin may preclude sarcomere formation and/or lead to degeneration of partially assembled sarcomeres due to unregulated actomyosin interactions. Our data also identify a novel αTM1/Tmod1-based pathway stabilizing F-actin at cell-cell junctions, which may be required for maintenance of cell shapes during embryonic cardiac morphogenesis.


Assuntos
Junções Aderentes/metabolismo , Comunicação Celular/fisiologia , Embrião de Mamíferos/embriologia , Coração/embriologia , Morfogênese/fisiologia , Tropomiosina/metabolismo , Junções Aderentes/genética , Animais , Embrião de Mamíferos/citologia , Camundongos , Camundongos Knockout , Tropomiosina/genética
12.
Dev Biol ; 349(2): 363-77, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20969840

RESUMO

Extensive elongation of lens fiber cells is a central feature of lens morphogenesis. Our study investigates the role of N-cadherin junctions in this process in vivo. We investigate both the molecular players involved in N-cadherin junctional maturation and the subsequent function of these junctions as epicenters for the assembly of an actin cytoskeleton that drives morphogenesis. We present the first evidence of nascent cadherin junctions in vivo, and show that they are a prominent feature along lateral interfaces of undifferentiated lens epithelial cells. Maturation of these N-cadherin junctions, required for lens cell differentiation, preceded organization of a cortical actin cytoskeleton along the cells' lateral borders, but was linked to recruitment of α-catenin and dephosphorylation of N-cadherin-linked ß-catenin. Biochemical analysis revealed differentiation-specific recruitment of actin regulators cortactin and Arp3 to maturing N-cadherin junctions of differentiating cells, linking N-cadherin junctional maturation with actin cytoskeletal assembly during fiber cell elongation. Blocking formation of mature N-cadherin junctions led to reduced association of α-catenin with N-cadherin, prevented organization of actin along lateral borders of differentiating lens fiber cells and blocked their elongation. These studies provide a molecular link between N-cadherin junctions and the organization of an actin cytoskeleton that governs lens fiber cell morphogenesis in vivo.


Assuntos
Actinas/metabolismo , Junções Aderentes/fisiologia , Caderinas/fisiologia , Diferenciação Celular/fisiologia , Citoesqueleto/fisiologia , Cristalino/embriologia , Morfogênese/fisiologia , Animais , Embrião de Galinha , Citoesqueleto/metabolismo , Immunoblotting , Imunoprecipitação , Cristalino/citologia , Microscopia de Fluorescência , Fosforilação , Tirosina/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo
13.
Blood ; 116(14): 2590-9, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20585041

RESUMO

The short actin filaments in the red blood cell (RBC) membrane skeleton are capped at their pointed ends by tropomodulin 1 (Tmod1) and coated with tropomyosin (TM) along their length. Tmod1-TM control of actin filament length is hypothesized to regulate spectrin-actin lattice organization and membrane stability. We used a Tmod1 knockout mouse to investigate the in vivo role of Tmod1 in the RBC membrane skeleton. Western blots of Tmod1-null RBCs confirm the absence of Tmod1 and show the presence of Tmod3, which is normally not present in RBCs. Tmod3 is present at only one-fifth levels of Tmod1 present on wild-type membranes, but levels of actin, TMs, adducins, and other membrane skeleton proteins remain unchanged. Electron microscopy shows that actin filament lengths are more variable with spectrin-actin lattices displaying abnormally large and more variable pore sizes. Tmod1-null mice display a mild anemia with features resembling hereditary spherocytic elliptocytosis, including decreased RBC mean corpuscular volume, cellular dehydration, increased osmotic fragility, reduced deformability, and heterogeneity in osmotic ektacytometry. Insufficient capping of actin filaments by Tmod3 may allow greater actin dynamics at pointed ends, resulting in filament length redistribution, leading to irregular and attenuated spectrin-actin lattice connectivity, and concomitant RBC membrane instability.


Assuntos
Citoesqueleto/ultraestrutura , Eritrócitos Anormais/ultraestrutura , Eritrócitos/metabolismo , Tropomodulina/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Actinas/ultraestrutura , Anemia/metabolismo , Anemia/patologia , Animais , Citoesqueleto/metabolismo , Citosol/metabolismo , Eritrócitos/patologia , Eritrócitos/ultraestrutura , Técnicas de Inativação de Genes , Camundongos , Fragilidade Osmótica , Tropomodulina/análise , Tropomodulina/genética
14.
Mol Biol Cell ; 33(3): ar28, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020457

RESUMO

Red blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes (∼37 nm length, 15-18 subunits) interconnected by long spectrin strands at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modeling of forces controlling RBC shape, membrane curvature, and deformation, yet the nanoscale organization and dynamics of the F-actin nodes in situ are not well understood. We examined F-actin distribution and dynamics in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities. Total internal reflection fluorescence and Zeiss Airyscan confocal microscopy demonstrate that F-actin is concentrated in multiple brightly stained F-actin foci ∼200-300 nm apart interspersed with dimmer F-actin staining regions. Single molecule stochastic optical reconstruction microscopy imaging of Alexa 647-phalloidin-labeled F-actin and computational analysis also indicates an irregular, nonrandom distribution of F-actin nodes. Treatment of RBCs with latrunculin A and cytochalasin D indicates that F-actin foci distribution depends on actin polymerization, while live cell imaging reveals dynamic local motions of F-actin foci, with lateral movements, appearance and disappearance. Regulation of F-actin node distribution and dynamics via actin assembly/disassembly pathways and/or via local extension and retraction of spectrin strands may provide a new mechanism to control spectrin-F-actin network connectivity, RBC shape, and membrane deformability.


Assuntos
Citoesqueleto de Actina , Actinas , Membrana Eritrocítica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Espectrina/metabolismo
15.
Nat Commun ; 13(1): 6230, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266342

RESUMO

TET (Ten-Eleven Translocation) dioxygenases effect DNA demethylation through successive oxidation of the methyl group of 5-methylcytosine (5mC) in DNA. In humans and in mouse models, TET loss-of-function has been linked to DNA damage, genome instability and oncogenesis. Here we show that acute deletion of all three Tet genes, after brief exposure of triple-floxed, Cre-ERT2-expressing mouse embryonic stem cells (mESC) to 4-hydroxytamoxifen, results in chromosome mis-segregation and aneuploidy; moreover, embryos lacking all three TET proteins showed striking variation in blastomere numbers and nuclear morphology at the 8-cell stage. Transcriptional profiling revealed that mRNA encoding a KH-domain protein, Khdc3 (Filia), was downregulated in triple TET-deficient mESC, concomitantly with increased methylation of CpG dinucleotides in the vicinity of the Khdc3 gene. Restoring KHDC3 levels in triple Tet-deficient mESC prevented aneuploidy. Thus, TET proteins regulate Khdc3 gene expression, and TET deficiency results in mitotic infidelity and genome instability in mESC at least partly through decreased expression of KHDC3.


Assuntos
Aneuploidia , Proteínas de Ligação a DNA , Dioxigenases , Células-Tronco Embrionárias Murinas , Animais , Camundongos , 5-Metilcitosina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo
16.
Circ Res ; 103(11): 1241-8, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18927466

RESUMO

Tropomodulin (Tmod)1 caps the pointed ends of actin filaments in sarcomeres of striated muscle myofibrils and in the erythrocyte membrane skeleton. Targeted deletion of mouse Tmod1 leads to defects in cardiac development, fragility of primitive erythroid cells, and an absence of yolk sac vasculogenesis, followed by embryonic lethality at embryonic day 9.5. The Tmod1-null embryonic hearts do not undergo looping morphogenesis and the cardiomyocytes fail to assemble striated myofibrils with regulated F-actin lengths. To test whether embryonic lethality of Tmod1 nulls results from defects in cardiac myofibrillogenesis and development or from erythroid cell fragility and subsequent defects in yolk sac vasculogenesis, we expressed Tmod1 specifically in the myocardium of the Tmod1-null mice under the control of the alpha-myosin heavy chain promoter Tg(alphaMHC-Tmod1). In contrast to Tmod1-null embryos, which fail to undergo cardiac looping and have defective yolk sac vasculogenesis, both cardiac and yolk sac morphology of Tmod1(-/-Tg(alphaMHC-Tmod1)) embryos are normal at embryonic day 9.5. Tmod1(-/-Tg(alphaMHC-Tmod1)) embryos develop into viable and fertile mice, indicating that expression of Tmod1 in the heart is sufficient to rescue the Tmod1-null embryonic defects. Thus, although loss of Tmod1 results in myriad defects and embryonic lethality, the Tmod1(-/-) primary defect is in the myocardium. Moreover, Tmod1 is not required in erythrocytes for viability, nor do the Tmod1(-/-) fragile primitive erythroid cells affect cardiac development, yolk sac vasculogenesis, or viability in the mouse.


Assuntos
Coração Fetal/fisiologia , Coração/fisiologia , Tropomodulina/deficiência , Tropomodulina/genética , Actinas/fisiologia , Animais , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Tamanho da Ninhada de Vivíparos , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miofibrilas/fisiologia , Cadeias Pesadas de Miosina/genética , Gravidez , Regiões Promotoras Genéticas , Sarcômeros/fisiologia , Saco Vitelino/fisiologia
17.
Aging (Albany NY) ; 11(24): 12497-12531, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844034

RESUMO

Life-long eye lens function requires an appropriate gradient refractive index, biomechanical integrity and transparency. We conducted an extensive study of wild-type mouse lenses 1-30 months of age to define common age-related changes. Biomechanical testing and morphometrics revealed an increase in lens volume and stiffness with age. Lens capsule thickness and peripheral fiber cell widths increased between 2 to 4 months of age but not further, and thus, cannot account for significant age-dependent increases in lens stiffness after 4 months. In lenses from mice older than 12 months, we routinely observed cataracts due to changes in cell structure, with anterior cataracts due to incomplete suture closure and a cortical ring cataract corresponding to a zone of compaction in cortical lens fiber cells. Refractive index measurements showed a rapid growth in peak refractive index between 1 to 6 months of age, and the area of highest refractive index is correlated with increases in lens nucleus size with age. These data provide a comprehensive overview of age-related changes in murine lenses, including lens size, stiffness, nuclear fraction, refractive index, transparency, capsule thickness and cell structure. Our results suggest similarities between murine and primate lenses and provide a baseline for future lens aging studies.


Assuntos
Envelhecimento/patologia , Cristalino/ultraestrutura , Envelhecimento/fisiologia , Animais , Fenômenos Biomecânicos , Catarata/etiologia , Feminino , Cristalino/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Refração Ocular
18.
Methods Mol Biol ; 1698: 205-228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29076092

RESUMO

During erythropoiesis, erythroblasts undergo dramatic morphological changes to produce mature erythrocytes. Many unanswered questions regarding the molecular mechanisms behind these changes can be addressed with high-resolution fluorescence imaging. Immunofluoresence staining enables localization of specific molecules, organelles, and membrane components in intact cells at different phases of erythropoiesis. Confocal laser scanning microscopy can provide high-resolution, three-dimensional images of stained structures, which can be used to dissect the molecular mechanisms driving erythropoiesis. The sample preparation, staining procedure, imaging parameters, and image analysis methods used directly affect the quality of the confocal images and the amount and accuracy of information that they can provide. Here, we describe methods to dissect erythropoietic tissues from mice, to perform immunofluorescence staining and confocal imaging of various molecules, organelles and structures of interest in erythroblasts, and to present and quantitatively analyze the data obtained in these fluorescence images.


Assuntos
Eritroblastos/citologia , Eritroblastos/metabolismo , Imunofluorescência , Microscopia de Fluorescência , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Eritropoese , Feminino , Feto , Processamento de Imagem Assistida por Computador , Fígado/citologia , Camundongos , Microscopia Confocal , Microscopia de Fluorescência/métodos , Gravidez
19.
Mol Biol Cell ; 29(16): 1963-1974, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30088796

RESUMO

The mouse eye lens was used as a model for multiscale transfer of loads. In the lens, compressive strain is distributed across specific lens tissue microstructures, including the extracellular capsule, as well as the epithelial and fiber cells. The removal of high loads resulted in complete recovery of most, but not all, microstructures.


Assuntos
Cápsula do Cristalino/patologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Forma Celular , Células Epiteliais/patologia , Camundongos Endogâmicos C57BL
20.
Mol Biol Cell ; 28(19): 2531-2542, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28720661

RESUMO

The short F-actins in the red blood cell (RBC) membrane skeleton are coated along their lengths by an equimolar combination of two tropomyosin isoforms, Tpm1.9 and Tpm3.1. We hypothesized that tropomyosin's ability to stabilize F-actin regulates RBC morphology and mechanical properties. To test this, we examined mice with a targeted deletion in alternatively spliced exon 9d of Tpm3 (Tpm3/9d-/- ), which leads to absence of Tpm3.1 in RBCs along with a compensatory increase in Tpm1.9 of sufficient magnitude to maintain normal total tropomyosin content. The isoform switch from Tpm1.9/Tpm3.1 to exclusively Tpm1.9 does not affect membrane skeleton composition but causes RBC F-actins to become hyperstable, based on decreased vulnerability to latrunculin-A-induced depolymerization. Unexpectedly, this isoform switch also leads to decreased association of Band 3 and glycophorin A with the membrane skeleton, suggesting that tropomyosin isoforms regulate the strength of F-actin-to-membrane linkages. Tpm3/9d-/- mice display a mild compensated anemia, in which RBCs have spherocytic morphology with increased osmotic fragility, reduced membrane deformability, and increased membrane stability. We conclude that RBC tropomyosin isoforms directly influence RBC physiology by regulating 1) the stability of the short F-actins in the membrane skeleton and 2) the strength of linkages between the membrane skeleton and transmembrane glycoproteins.


Assuntos
Actinas/sangue , Eritrócitos/citologia , Eritrócitos/metabolismo , Tropomiosina/sangue , Citoesqueleto de Actina/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Polimerização , Ligação Proteica , Isoformas de Proteínas , Tropomiosina/genética , Tropomiosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA