Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274924

RESUMO

In this report, a polytetrahydrofuran-coated polyester fabric phase sorptive extraction (FPSE) for the determination of doxycycline in human urine was described. The sol-gel polytetrahydrofuran sorbent proved to be superior against other sol-gel coated cellulose and polyester membranes tested. The effect of the extraction parameters including membrane surface area, sample pH and volume, salt concentration, extraction time, stirring rate, etc., on the extraction efficiency of the analyte was studied using the "one-factor-at-a-time" (OFAT) and Box-Behnken design approaches. The analytical method proposed was validated in compliance with FDA guidelines for bioanalytical procedures. The method was linear in the determination range of 100-5000 ng/mL with the determination coefficient of 0.9953. The limit of detection (LOD) and the lower limit of quantification for doxycycline was 17 and 100 ng/mL, respectively. The relative recoveries for intra-day and inter-day studies ranged from 98.5-112.2% and 89.6-96.8%, respectively. The relative standard deviation was lower than 14.7% in all cases, exhibiting good precision. The sol-gel polytetrahydrofuran-modified FPSE membranes were reusable for at least 30 times. The greenness of the developed method was evaluated using Sample Preparation Metric of Sustainability (SPMS) and Blue Applicability Grade Index (BAGI) metric tools. Finally, the analytical scheme was successfully employed for the quantitation of urinary doxycycline collected at various time points following the administration of doxycycline-containing tablets.


Assuntos
Doxiciclina , Furanos , Poliésteres , Humanos , Doxiciclina/urina , Doxiciclina/química , Poliésteres/química , Furanos/urina , Furanos/química , Limite de Detecção , Extração em Fase Sólida/métodos
2.
Molecules ; 28(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894565

RESUMO

Homotaurine (HOM) is considered a promising drug for the treatment of Alzheimer's and other neurodegenerative diseases. In the present work, a new high-performance liquid chromatography with fluorescence detection (HPLC-FLD) (λex. = 340 nm and λem. = 455 nm) method was developed and validated for the study of substance permeability in the central nervous system (CNS). Analysis was performed on a RP-C18 column with a binary gradient elution system consisting of methanol-potassium phosphate buffer solution (pH = 7.0, 0.02 M) as mobile phase. Samples of homotaurine and histidine (internal standard) were initially derivatized with ortho-phthalaldehyde (OPA) (0.01 M), N-acetylcysteine (0.01 M) and borate buffer (pH = 10.5; 0.05 M). To ensure the stability and efficiency of the reaction, the presence of different nucleophilic reagents, namely (a) 2-mercaptoethanol (2-ME), (b) N-acetylcysteine (NAC), (c) tiopronin (Thiola), (d) 3-mercaptopropionic acid (3-MPA) and (e) captopril, was investigated. The method was validated (R2 = 0.9999, intra-day repeatability %RSD < 3.22%, inter-day precision %RSD = 1.83%, limits of detection 5.75 ng/mL and limits of quantification 17.43 ng/mL, recovery of five different concentrations 99.75-101.58%) and successfully applied to investigate the in vitro permeability of homotaurine using Franz diffusion cells. The apparent permeability (Papp) of HOM was compared with that of memantine, which is considered a potential therapeutic drug for various CNSs. Our study demonstrates that homotaurine exhibits superior permeability through the simulated blood-brain barrier compared to memantine, offering promising insights for enhanced drug delivery strategies targeting neurological conditions.


Assuntos
Acetilcisteína , Memantina , Acetilcisteína/química , Cromatografia Líquida de Alta Pressão/métodos , o-Ftalaldeído/química , Indicadores e Reagentes , Tiopronina , Reprodutibilidade dos Testes
3.
Artigo em Inglês | MEDLINE | ID: mdl-39293158

RESUMO

Herein, we describe the utilization of an ionic liquid (IL)/Carbowax 20 M-functionalized sol-gel sorbent for the capsule phase microextraction of doxycycline in authentic human urine samples. This green sample preparation method combines stirring and filtration in a single, standalone sample preparation device, streamlining the sample preparation process. Additionally, it provides rapid extraction kinetics and high extraction efficiency. The experimental conditions (i.e. sorbent type, sample pH and volume, extraction time, ionic strength, elution solvent, and volume) affecting the extraction efficiency of the analyte were studied and optimized. The method was linear in the range of 0.1 - 5.0 µg/mL with a coefficient of determination higher than 0.995. The achieved LOD was found to be 0.02 µg/mL while the lower limit of quantitation (LLOQ) was 0.1 µg/mL. The IL/Carbowax 20 M-functionalized microextraction capsules were reusable at least 30 times for urine samples. The relative recoveries (% RR) ranged between 93.4 - 115.9 % while the precision (expressed as % RSD) was better than 8.1 % in all cases. The robustness of the microextraction procedure and the instrumental HPLC method were separately investigated using Plackett-Burman experimental designs. The analytical protocol demonstrated cost-effectiveness, ease of handling, and speed, leading to increased sample throughput. The green character of the developed method was evaluated using the Green Analytical Procedure Index (GAPI) and Blue Applicability Grade Index (BAGI). Finally, the method's applicability was demonstrated by analyzing authentic human urine samples after oral administration of a doxycycline-containing pharmaceutical formulation.

4.
J Chromatogr A ; 1717: 464674, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38290172

RESUMO

In this research, a sol-gel Carbowax 20M-zwitterionic ionic liquid composite sorbent-based capsule phase microextraction (CPME) device was developed in combination with liquid chromatography-post column derivatization for the first ever reported determination of a somatostatin analogue - lanreotide in human urine. The sol-gel Carbowax 20M-zwitterionic ionic liquid composite sorbent was encapsulated in the lumen of a polypropylene capillary tube and characterized by FT-IR spectroscopy and SEM with energy dispersive X-ray spectroscopy (EDS). The main steps of the CPME workflow were optimized to obtain high extraction efficiency for the target analyte. After the separation of the analyte on a C8 stationary phase, the peptide was derivatized online with o-phthalaldehyde before the fluorescence detection. The main experimental parameters of CPME and the post-column procedures were systematically investigated and optimized. The method was validated in terms of selectivity, linearity, accuracy, precision, limits of detection (LOD), and limits of quantification (LOQ). The relative bias ranged between 88.8 and 115.6 % for the peptide, while the RSD values for repeatability and intermediate precision were less than 14.3 %. The achieved limit of detection (LOD) was 0.2 µΜ while the limit of quantitation (LOQ) was established as 0.9 µΜ. Finally, the sol-gel Carbowax 20M-zwitterionic ionic liquid composite sorbent-based microextraction capsules were found to be reusable for at least 20 extractions. The developed method presented adequate overall performance, and it could be applied in the analysis of selected peptide in human urine samples.


Assuntos
Líquidos Iônicos , Microextração em Fase Líquida , Somatostatina/análogos & derivados , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Polietilenoglicóis , Líquidos Iônicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Microextração em Fase Sólida/métodos , Peptídeos Cíclicos , Limite de Detecção
5.
J Pharm Biomed Anal ; 248: 116324, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38924878

RESUMO

Since 3D printing technology is an emerging field in pharmaceutical technology, the present study aimed at the development of a mixed-mode liquid chromatographic method for the separation and determination of hydrochlorothiazide, diltiazem, and propranolol to investigate their in-vitro release performance from 3D printed tablets. Due to the unique properties of the mixed-mode stationary phase, the three drugs were separated in less than 8 min under isocratic elution. Method development was accomplished following the Analytical Quality by Design principles and was evaluated using risk assessment and multivariate analysis. The influences of critical method parameters on critical method attributes (were screened using a 2-level fractional factorial design and subsequently optimized through a central composite design. The method operable design region was approved by the establishment of a robust zone using Monte Carlo simulation and capability analysis. The validation of the HPLC method was performed based on the total error concept. The relative bias was varied between ─ 11.6 % and 10.5 % and the RSD values for repeatability and intermediate precision were below 4.4 % in all cases. The limits of detection (LOD) ranged between 0.17 - 0.90 µg/mL and were adequate for the specific application. The developed method was successfully applied to the analysis of the studied drugs in in-vitro drug release samples obtained from 3D-printed tablets combining the above-mentioned active pharmaceutical ingredients (APIs).


Assuntos
Diltiazem , Liberação Controlada de Fármacos , Hidroclorotiazida , Limite de Detecção , Impressão Tridimensional , Propranolol , Comprimidos , Hidroclorotiazida/análise , Hidroclorotiazida/química , Cromatografia Líquida de Alta Pressão/métodos , Diltiazem/análise , Diltiazem/química , Propranolol/análise , Propranolol/química , Reprodutibilidade dos Testes , Tecnologia Farmacêutica/métodos , Método de Monte Carlo , Química Farmacêutica/métodos
6.
Int J Pharm ; 655: 124058, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552754

RESUMO

Polypharmacy is a common issue, especially among elderly patients resulting in administration errors and patient inconvenience. Hypertension is a prevalent health condition that frequently leads to polypharmacy, as its treatment typically requires the co-administration of more than one different Active Pharmaceutical Ingredients (API's). To address these issues, floating hollow torus-shaped dosage forms were developed, aiming at providing prolonged gastric retention and sustained drug release. The dosage forms (polypills) containing three anti-hypertensive API's (diltiazem (DIL), propranolol (PRP) and hydrochlorothiazide (HCTZ)) were created via Fused Deposition Modelling 3D printing. A multitude of the dosage forms were loaded into a capsule and the resulting formulation achieved prolonged retention times over a 12-hour period in vitro, by leveraging both the buoyancy of the dosage forms, and the "cheerios effect" that facilitates the aggregation and retention of the dosage forms via a combination of surface tension and shape of the objects. Physicochemical characterization methods and imaging techniques were employed to investigate the properties and the internal and external structure of the dosage forms. Furthermore, an ex vivo porcine stomach model revealed substantial aggregation, adhesion and retention of the 3D printed dosage forms in porcine stomach. In vitro dissolution testing demonstrated almost complete first-order release of PRP and DIL (93.52 % and 99.9 %, respectively) and partial release of HCTZ (65.22 %) in the 12 h timeframe. Finally, a convolution-based single-stage approach was employed in order to predict the pharmacokinetic (PK) parameters of the API's of the formulation and the resemblance of their PK behavior with previously reported data.


Assuntos
Anti-Hipertensivos , Diltiazem , Humanos , Idoso , Preparações de Ação Retardada/química , Comprimidos/química , Liberação Controlada de Fármacos , Hidroclorotiazida , Impressão Tridimensional , Tecnologia Farmacêutica/métodos
7.
Bioanalysis ; 15(15): 937-954, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37638635

RESUMO

Microextraction techniques have attracted the attention of many researchers working in the field of bioanalysis due to their unique advantages, mainly in downsizing the scale of sample preparation steps. In parallel, analytical derivatization offers a powerful combination in terms of additional sensitivity, selectivity and compatibility with modern separation techniques. The aim of this review is to discuss the most recent advances in bioanalytical sample preparation based on the combination of microextraction and analytical derivatization. Both innovative fundamental reports and analyte-targeted applications are included and discussed. Dispersive liquid-liquid extraction and solid-phase microextraction are the most common techniques that typically combined with derivatization, while the development of novel and greener protocols is receiving substantial consideration in the field of analytical chemistry.


Assuntos
Química Analítica , Extração Líquido-Líquido , Humanos , Pesquisadores , Microextração em Fase Sólida , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA