Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(4): ar33, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857169

RESUMO

Spore formation in the budding yeast, Saccharomyces cerevisiae, involves de novo creation of four prospore membranes, each of which surrounds a haploid nucleus resulting from meiosis. The meiotic outer plaque (MOP) is a meiosis-specific protein complex associated with each meiosis II spindle pole body (SPB). Vesicle fusion on the MOP surface creates an initial prospore membrane anchored to the SPB. Ady4 is a meiosis-specific MOP component that stabilizes the MOP-prospore membrane interaction. We show that Ady4 recruits the lipid kinase, Mss4, to the MOP. MSS4 overexpression suppresses the ady4∆ spore formation defect, suggesting that a specific lipid environment provided by Mss4 promotes maintenance of prospore membrane attachment to MOPs. The meiosis-specific Spo21 protein is an essential structural MOP component. We show that the Spo21 N terminus contains an amphipathic helix that binds to prospore membranes. A mutant in SPO21 that removes positive charges from this helix shares phenotypic similarities to ady4∆. We propose that Mss4 generates negatively charged lipids in prospore membranes that enhance binding by the positively charged N terminus of Spo21, thereby providing a mechanism by which the MOP-prospore membrane interaction is stabilized.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Lipídeos , Meiose , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Polos do Fuso/metabolismo , Esporos Fúngicos/metabolismo
2.
Gels ; 6(4)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142677

RESUMO

Antioxidants are known to improve the wound healing process and are researched as a therapeutic strategy to treat chronic wounds. Dopamine is a known neurotransmitter with antioxidant properties that can be polymerized to form polydopamine (PDA). Herein, polydopamine is demonstrated as an antioxidant biomaterial. In prior work, we developed methodology to prepare hydrogels by crosslinking polysaccharides with polyamines via epichlorohydrin and NaOH. Using this previously developed methodology, dextran hydrogels crosslinked with polydopamine were prepared. Darkening of the gels indicated the increasing incorporation of polydopamine within the hydrogels. In addition to basic pH, polydopamine can be formed by reaction with polyethylene imine (PEI), which results in PEI-PDA copolymer. Dextran was similarly crosslinked with the PEI-PDA copolymer and resulted in sturdier, darker gels, which had more polydopamine incorporated. Hydrogel morphology and strength were dependent on the feed ratios of dopamine. Antioxidant activity of polydopamine containing hydrogel was confirmed and shown to be dependent on the amount of dopamine used in hydrogel synthesis. Hydrogels with 0.5 dopamine to dextran feed ratio scavenged 78.8% of radicals in a 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) antioxidant assay while gels with no dopamine scavenged only 1.4% of radicals. An ex vivo wound healing assay showed considerable cell migration with the PEI-PDA containing hydrogel.

3.
Int J Biol Macromol ; 111: 370-378, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29325744

RESUMO

Amine functionalized polysaccharide hydrogels such as those based on chitosan are widely examined as biomaterials. Here we set out to develop a facile procedure for developing such hydrogels by crosslinking dextran with amino acid diamines. The dextran-amino acid gels were formed by the addition of the amino acid diamines to a dextran and epichlorohydrin solution once it became homogeneous. This was demonstrated with three amino acid diamines, lysine, lysine methyl ester, and cystine dimethyl ester. Hydrogel networks with albumin entrapped were also demonstrated. These hydrogels were characterized by FTIR, SEM, rotational rheometry, swelling studies and cell biocompatibility analysis. These hydrogels showed the unexpected pH-responsive behavior of greater swelling at more basic pH, similar to that of an anionic hydrogel. This is uncharacteristic for amine functionalized gels as they typically exhibit cationic hydrogel behavior. All hydrogels showed similar biocompatibility to that of dextran crosslinked without amino acids.


Assuntos
Aminoácidos/química , Materiais Biocompatíveis/química , Hidrogéis/química , Aminoácidos/síntese química , Materiais Biocompatíveis/síntese química , Quitosana/química , Dextranos/química , Diaminas/química , Ésteres/química , Hidrogéis/síntese química , Reologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA