Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 23(6): 2512-2521, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35506692

RESUMO

Rising global demand for biodegradable materials and green sources of energy has brought attention to lignin. Herein, we report a method for manufacturing standalone lignin membranes without additives for the first time to date. We demonstrate a scalable method for macroporous (∼100 to 200 nm pores) lignin membrane production using four different organosolv lignin materials under a humid environment (>50% relative humidity) at ambient temperatures (∼20 °C). A range of different thicknesses is reported with densely porous films observed to form if the membrane thickness is below 100 nm. The fabricated membranes were readily used as a template for Ni2+ incorporation to produce a nickel oxide membrane after UV/ozone treatment. The resultant mask was etched via an inductively coupled plasma reactive ion etch process, forming a silicon membrane and as a result yielding black silicon (BSi) with a pore depth of >1 µm after 3 min with reflectance <3% in the visible light region. We anticipate that our lignin membrane methodology can be readily applied to various processes ranging from catalysis to sensing and adapted to large-scale manufacturing.


Assuntos
Lignina , Silício , Catálise , Porosidade , Temperatura
2.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743277

RESUMO

Vibrational spectroscopy techniques are widely used in analytical chemistry, physics and biology. The most prominent techniques are Raman and Fourier-transform infrared spectroscopy (FTIR). Combining both techniques delivers complementary information of the test sample. We present the design, construction, and calibration of a novel bimodal spectroscopy system featuring both Raman and infrared measurements simultaneously on the same sample without mutual interference. The optomechanical design provides a modular flexible system for solid and liquid samples and different configurations for Raman. As a novel feature, the Raman module can be operated off-axis for optical sectioning. The calibrated system demonstrates high sensitivity, precision, and resolution for simultaneous operation of both techniques and shows excellent calibration curves with coefficients of determination greater than 0.96. We demonstrate the ability to simultaneously measure Raman and infrared spectra of complex biological material using bovine serum albumin. The performance competes with commercial systems; moreover, it presents the additional advantage of simultaneously operating Raman and infrared techniques. To the best of our knowledge, it is the first demonstration of a combined Raman-infrared system that can analyze the same sample volume and obtain optically sectioned Raman signals. Additionally, quantitative comparison of confocality of backscattering micro-Raman and off-axis Raman was performed for the first time.


Assuntos
Análise Espectral Raman , Vibração , Calibragem , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA