Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(5): e3002418, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713714

RESUMO

The phenomenon of de novo gene birth-the emergence of genes from non-genic sequences-has received considerable attention due to the widespread occurrence of genes that are unique to particular species or genomes. Most instances of de novo gene birth have been recognized through comparative analyses of genome sequences in eukaryotes, despite the abundance of novel, lineage-specific genes in bacteria and the relative ease with which bacteria can be studied in an experimental context. Here, we explore the genetic record of the Escherichia coli long-term evolution experiment (LTEE) for changes indicative of "proto-genic" phases of new gene birth in which non-genic sequences evolve stable transcription and/or translation. Over the time span of the LTEE, non-genic regions are frequently transcribed, translated and differentially expressed, with levels of transcription across low-expressed regions increasing in later generations of the experiment. Proto-genes formed downstream of new mutations result either from insertion element activity or chromosomal translocations that fused preexisting regulatory sequences to regions that were not expressed in the LTEE ancestor. Additionally, we identified instances of proto-gene emergence in which a previously unexpressed sequence was transcribed after formation of an upstream promoter, although such cases were rare compared to those caused by recruitment of preexisting promoters. Tracing the origin of the causative mutations, we discovered that most occurred early in the history of the LTEE, often within the first 20,000 generations, and became fixed soon after emergence. Our findings show that proto-genes emerge frequently within evolving populations, can persist stably, and can serve as potential substrates for new gene formation.


Assuntos
Escherichia coli , Evolução Molecular , Regiões Promotoras Genéticas , Escherichia coli/genética , Regiões Promotoras Genéticas/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Mutação , Genes Bacterianos , Transcrição Gênica
2.
Annu Rev Microbiol ; 74: 815-834, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32692614

RESUMO

The genomes of bacteria contain fewer genes and substantially less noncoding DNA than those of eukaryotes, and as a result, they have much less raw material to invent new traits. Yet, bacteria are vastly more taxonomically diverse, numerically abundant, and globally successful in colonizing new habitats compared to eukaryotes. Although bacterial genomes are generally considered to be optimized for efficient growth and rapid adaptation, nonadaptive processes have played a major role in shaping the size, contents, and compact organization of bacterial genomes and have allowed the establishment of deleterious traits that serve as the raw materials for genetic innovation.


Assuntos
Bactérias/genética , Evolução Molecular , Genoma Bacteriano , Bactérias/classificação , Cromossomos Bacterianos/genética , Eucariotos/genética , Deriva Genética
3.
Nat Rev Genet ; 20(4): 195-206, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30622302

RESUMO

Humans assemble a specialized microbiome from a world teeming with diverse microorganisms. Comparison to the microbiomes of great apes provides a dimension that is indispensable to understanding how these microbial communities form, function and change. This evolutionary perspective exposes not only how human gut microbiomes have been shaped by our great-ape heritage but also the features that make humans unique, as exemplified by an expansive loss of bacterial and archaeal diversity and the identification of microbial lineages that have co-diversified with their hosts.


Assuntos
Archaea/genética , Bactérias/genética , Evolução Biológica , Microbioma Gastrointestinal/genética , Variação Genética , Hominidae/microbiologia , Animais , Humanos , Filogenia
4.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36585846

RESUMO

Escherichia coli have served as important model organisms for over a century-used to elucidate key aspects of genetics, evolution, molecular biology, and pathogenesis. However, defining which strains actually belong to this species is erratic and unstable due to shifts in the characters and criteria used to distinguish bacterial species. Additionally, many isolates designated as E. coli are genetically more closely related to strains of Shigella than to other E. coli, creating a situation in which the entire genus of Shigella and its four species are encompassed within the single species E. coli. We evaluated all complete genomes assigned to E. coli and its closest relatives according to the biological species concept (BSC), using evidence of reproductive isolation and gene flow (i.e., homologous recombination in the case of asexual bacteria) to ascertain species boundaries. The BSC establishes a uniform, consistent, and objective principle that allows species-level classification across all domains of life and does not rely on either phenotypic or genotypic similarity to a defined type-specimen for species membership. Analyzing a total of 1,887 sequenced genomes and comparing our results to other genome-based classification methods, we found few barriers to gene flow among the strains, clades, phylogroups, or species within E. coli and Shigella. Due to the utility in recognizing which strains constitute a true biological species, we designate genomes that form a genetic cohesive group as members of E. coliBIO.


Assuntos
Escherichia coli , Shigella , Escherichia coli/genética , Filogenia , Shigella/genética , Genoma , Sequência de Bases , Genoma Bacteriano
5.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244443

RESUMO

Single-stranded DNA phages of the family Microviridae have fundamentally different evolutionary origins and dynamics than the more frequently studied double-stranded DNA phages. Despite their small size (around 5 kb), which imposes extreme constraints on genomic innovation, they have adapted to become prominent members of viromes in numerous ecosystems and hold a dominant position among viruses in the human gut. We show that multiple, divergent lineages in the family Microviridae have independently become capable of lysogenizing hosts and have convergently developed hypervariable regions in their DNA pilot protein, which is responsible for injecting the phage genome into the host. By creating microviruses with combinations of genomic segments from different phages and infecting Escherichia coli as a model system, we demonstrate that this hypervariable region confers the ability of temperate Microviridae to prevent DNA injection and infection by other microviruses. The DNA pilot protein is present in most microviruses, but has been recruited repeatedly into this additional role as microviruses altered their lifestyle by evolving the ability to integrate in bacterial genomes, which linked their survival to that of their hosts. Our results emphasize that competition between viruses is a considerable and often overlooked source of selective pressure, and by producing similar evolutionary outcomes in distinct lineages, it underlies the prevalence of hypervariable regions in the genomes of microviruses and perhaps beyond.


Assuntos
Microvirus/fisiologia , Superinfecção/virologia , Proteínas Virais/química , DNA Viral/metabolismo , Escherichia coli/virologia , Imunidade , Filogenia , Prófagos/fisiologia , Superinfecção/imunologia
6.
PLoS Genet ; 16(12): e1009272, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332358

RESUMO

The Betacoronaviruses comprise multiple subgenera whose members have been implicated in human disease. As with SARS, MERS and now SARS-CoV-2, the origin and emergence of new variants are often attributed to events of recombination that alter host tropism or disease severity. In most cases, recombination has been detected by searches for excessively similar genomic regions in divergent strains; however, such analyses are complicated by the high mutation rates of RNA viruses, which can produce sequence similarities in distant strains by convergent mutations. By applying a genome-wide approach that examines the source of individual polymorphisms and that can be tested against null models in which recombination is absent and homoplasies can arise only by convergent mutations, we examine the extent and limits of recombination in Betacoronaviruses. We find that recombination accounts for nearly 40% of the polymorphisms circulating in populations and that gene exchange occurs almost exclusively among strains belonging to the same subgenus. Although experimental studies have shown that recombinational exchanges occur at random along the coronaviral genome, in nature, they are vastly overrepresented in regions controlling viral interaction with host cells.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/genética , Recombinação Genética/genética , Glicoproteína da Espícula de Coronavírus/genética , Troca Genética/genética , Genes Virais/genética , Genoma Viral/genética , Especificidade de Hospedeiro/genética , Modelos Genéticos , Polimorfismo Genético , SARS-CoV-2/classificação , SARS-CoV-2/genética , Tropismo Viral/genética
7.
J Gen Virol ; 102(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33830905

RESUMO

Mosquito-borne arboviruses, including a diverse array of alphaviruses and flaviviruses, lead to hundreds of millions of human infections each year. Current methods for species-level classification of arboviruses adhere to guidelines prescribed by the International Committee on Taxonomy of Viruses (ICTV), and generally apply a polyphasic approach that might include information about viral vectors, hosts, geographical distribution, antigenicity, levels of DNA similarity, disease association and/or ecological characteristics. However, there is substantial variation in the criteria used to define viral species, which can lead to the establishment of artificial boundaries between species and inconsistencies when inferring their relatedness, variation and evolutionary history. In this study, we apply a single, uniform principle - that underlying the Biological Species Concept (BSC) - to define biological species of arboviruses based on recombination between genomes. Given that few recombination events have been documented in arboviruses, we investigate the incidence of recombination within and among major arboviral groups using an approach based on the ratio of homoplastic sites (recombinant alleles) to non-homoplastic sites (vertically transmitted alleles). This approach supports many ICTV-designations but also recognizes several cases in which a named species comprises multiple biological species. These findings demonstrate that this metric may be applied to all lifeforms, including viruses, and lead to more consistent and accurate delineation of viral species.


Assuntos
Infecções por Arbovirus/virologia , Arbovírus , Culicidae/virologia , Flavivirus , Mosquitos Vetores/virologia , Animais , Arbovírus/classificação , Arbovírus/genética , Bases de Dados Genéticas , Flavivirus/classificação , Flavivirus/genética
8.
Proc Natl Acad Sci U S A ; 115(23): 6040-6045, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784828

RESUMO

Due to their dependence on cellular organisms for metabolism and replication, viruses are typically named and assigned to species according to their genome structure and the original host that they infect. But because viruses often infect multiple hosts and the numbers of distinct lineages within a host can be vast, their delineation into species is often dictated by arbitrary sequence thresholds, which are highly inconsistent across lineages. Here we apply an approach to determine the boundaries of viral species based on the detection of gene flow within populations, thereby defining viral species according to the biological species concept (BSC). Despite the potential for gene transfer between highly divergent genomes, viruses, like the cellular organisms they infect, assort into reproductively isolated groups and can be organized into biological species. This approach revealed that BSC-defined viral species are often congruent with the taxonomic partitioning based on shared gene contents and host tropism, and that bacteriophages can similarly be classified in biological species. These results open the possibility to use a single, universal definition of species that is applicable across cellular and acellular lifeforms.


Assuntos
Bacteriófagos/genética , Especificidade da Espécie , Vírus/genética , Evolução Biológica , Especiação Genética , Genoma Viral/genética , Especificidade de Hospedeiro/genética , Filogenia , Viroses/genética
9.
Annu Rev Ecol Evol Syst ; 50(1): 451-475, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32733173

RESUMO

Animals are distinguished by having guts: organs that must extract nutrients from food while barring invasion by pathogens. Most guts are colonized by non-pathogenic microorganisms, but the functions of these microbes, or even the reasons why they occur in the gut, vary widely among animals. Sometimes these microorganisms have co-diversified with hosts; sometimes they live mostly elsewhere in the environment. Either way, gut microorganisms often benefit hosts. Benefits may reflect evolutionary "addiction" whereby hosts incorporate gut microorganisms into normal developmental processes. But benefits often include novel ecological capabilities; for example, many metazoan clades exist by virtue of gut communities enabling new dietary niches. Animals vary immensely in their dependence on gut microorganisms, from lacking them entirely, to using them as food, to obligate dependence for development, nutrition, or protection. Many consequences of gut microorganisms for hosts can be ascribed to microbial community processes and the host's ability to shape these processes.

10.
Bioinformatics ; 34(21): 3738-3740, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771275

RESUMO

Summary: Classification of prokaryotic species is usually based on sequence similarity thresholds, which are easy to apply but lack a biologically-relevant foundation. Here, we present ConSpeciFix, a program that classifies prokaryotes into species using criteria set forth by the Biological Species Concept, thereby unifying species definition in all domains of life. Availability and implementation: ConSpeciFix's webserver is freely available at www.conspecifix.com. The local version of the program can be freely downloaded from https://github.com/Bobay-Ochman/ConSpeciFix. ConSpeciFix is written in Python 2.7 and requires the following dependencies: Usearch, MCL, MAFFT and RAxML.


Assuntos
Fluxo Gênico , Software
11.
Proc Natl Acad Sci U S A ; 113(12): 3311-6, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26884158

RESUMO

Errors that occur during transcription have received much less attention than the mutations that occur in DNA because transcription errors are not heritable and usually result in a very limited number of altered proteins. However, transcription error rates are typically several orders of magnitude higher than the mutation rate. Also, individual transcripts can be translated multiple times, so a single error can have substantial effects on the pool of proteins. Transcription errors can also contribute to cellular noise, thereby influencing cell survival under stressful conditions, such as starvation or antibiotic stress. Implementing a method that captures transcription errors genome-wide, we measured the rates and spectra of transcription errors in Escherichia coli and in endosymbionts for which mutation and/or substitution rates are greatly elevated over those of E. coli Under all tested conditions, across all species, and even for different categories of RNA sequences (mRNA and rRNAs), there were no significant differences in rates of transcription errors, which ranged from 2.3 × 10(-5) per nucleotide in mRNA of the endosymbiont Buchnera aphidicola to 5.2 × 10(-5) per nucleotide in rRNA of the endosymbiont Carsonella ruddii The similarity of transcription error rates in these bacterial endosymbionts to that in E. coli (4.63 × 10(-5) per nucleotide) is all the more surprising given that genomic erosion has resulted in the loss of transcription fidelity factors in both Buchnera and Carsonella.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Transcrição Gênica , Proteínas de Escherichia coli/química , Genes Bacterianos , Simbiose
12.
Proc Natl Acad Sci U S A ; 113(13): 3639-44, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26957597

RESUMO

The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes--one of two major phyla in the gut--also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.


Assuntos
Microbioma Gastrointestinal/fisiologia , Animais , Bacteroides fragilis/genética , Bacteroides fragilis/imunologia , Bacteroides fragilis/fisiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Genoma Bacteriano , Vida Livre de Germes , Humanos , Masculino , Camundongos , Modelos Animais , Filogenia , Simbiose/genética , Simbiose/imunologia , Simbiose/fisiologia , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/imunologia , Sistemas de Secreção Tipo VI/fisiologia
13.
BMC Evol Biol ; 18(1): 153, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30314447

RESUMO

BACKGROUND: Knowledge of population-level processes is essential to understanding the efficacy of selection operating within a species. However, attempts at estimating effective population sizes (Ne) are particularly challenging in bacteria due to their extremely large census populations sizes, varying rates of recombination and arbitrary species boundaries. RESULTS: In this study, we estimated Ne for 153 species (152 bacteria and one archaeon) defined under a common framework and found that ecological lifestyle and growth rate were major predictors of Ne; and that contrary to theoretical expectations, Ne was unaffected by recombination rate. Additionally, we found that Ne shapes the evolution and diversity of total gene repertoires of prokaryotic species. CONCLUSION: Together, these results point to a new model of genome architecture evolution in prokaryotes, in which pan-genome sizes, not individual genome sizes, are governed by drift-barrier evolution.


Assuntos
Bactérias/genética , Evolução Molecular , Genoma Bacteriano , Archaea/genética , Bactérias/crescimento & desenvolvimento , Tamanho do Genoma , Filogenia , Densidade Demográfica , Recombinação Genética/genética
14.
Mol Biol Evol ; 34(10): 2627-2636, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957503

RESUMO

The mutational process in bacteria is biased toward A and T, and most species are GC-rich relative to the mutational input to their genome. It has been proposed that the shift in base composition is an adaptive process-that natural selection operates to increase GC-contents-and there is experimental evidence that bacterial strains with GC-rich versions of genes have higher growth rates than those strains with AT-rich versions expressing identical proteins. Alternatively, a nonadaptive process, GC-biased gene conversion (gBGC), could also increase the GC-content of DNA due to the mechanistic bias of gene conversion events during recombination. To determine what role recombination plays in the base composition of bacterial genomes, we compared the spectrum of nucleotide polymorphisms introduced by recombination in all microbial species represented by large numbers of sequenced strains. We found that recombinant alleles are consistently biased toward A and T, and that the magnitude of AT-bias introduced by recombination is similar to that of mutations. These results indicate that recombination alone, without the intervention of selection, is unlikely to counteract the AT-enrichment of bacterial genomes.


Assuntos
Composição de Bases/genética , Recombinação Genética/genética , Archaea/genética , Bactérias/genética , Simulação por Computador , Evolução Molecular , Conversão Gênica , Genoma Bacteriano , Mutação , Filogenia , Seleção Genética , Análise de Sequência/métodos
15.
Mol Ecol ; 27(8): 1884-1897, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290090

RESUMO

The variation and taxonomic diversity among mammalian gut microbiomes raises several questions about the factors that contribute to the rates and patterns of change in these microbial communities. By comparing the microbiome compositions of 112 species representing 14 mammalian orders, we assessed how host and ecological factors contribute to microbiome diversification. Except in rare cases, the same bacterial phyla predominate in mammalian gut microbiomes, and there has been some convergence of microbiome compositions according to dietary category across all mammalians lineages except Chiropterans (bats), which possess high proportions of Proteobacteria and tend to be most similar to one another regardless of diet. At lower taxonomic ranks (families, genera, 97% OTUs), bacteria are more likely to be associated with a particular mammalian lineage than with a particular dietary category, resulting in a strong phylogenetic signal in the degree to which microbiomes diverge. Despite different physiologies, the gut microbiomes of several mammalian lineages have diverged at roughly the same rate over the past 75 million years; however, the gut microbiomes of Cetartiodactyla (ruminants, whales, hippopotami) have evolved much faster and those of Chiropterans much slower. Contrary to expectations, the number of dietary transitions within a lineage does not influence rates of microbiome divergence, but instead, some of the most dramatic changes are associated with the loss of bacterial taxa, such as those accompanying the transition from terrestrial to marine lifestyles and the evolution of hominids.


Assuntos
Microbioma Gastrointestinal/genética , Variação Genética/genética , Mamíferos/microbiologia , Microbiota/genética , Animais , Bactérias/genética , Hominidae/genética , Hominidae/microbiologia , Mamíferos/genética , Filogenia , Proteobactérias/genética , RNA Ribossômico 16S/genética , Baleias/genética , Baleias/microbiologia
16.
PLoS Biol ; 13(1): e1002050, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602283

RESUMO

The development of high-throughput sequencing technologies has transformed our capacity to investigate the composition and dynamics of the microbial communities that populate diverse habitats. Over the past decade, these advances have yielded an avalanche of metagenomic data. The current stage of "van Leeuwenhoek"-like cataloguing, as well as functional analyses, will likely accelerate as DNA and RNA sequencing, plus protein and metabolic profiling capacities and computational tools, continue to improve. However, it is time to consider: what's next for microbiome research? The short pieces included here briefly consider the challenges and opportunities awaiting microbiome research.


Assuntos
Pesquisa Biomédica/tendências , Microbiota , Evolução Biológica , Trato Gastrointestinal/microbiologia , Humanos , Pele/microbiologia , Biologia Sintética , Biologia de Sistemas
17.
Proc Natl Acad Sci U S A ; 112(29): 8893-900, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26195749

RESUMO

Bacteria reproduce asexually and pass on a single genome copied from the parent, a reproductive mode that assures the clonal descent of progeny; however, a truly clonal bacterial species is extremely rare. The signal of clonality can be interrupted by gene uptake and exchange, initiating homologous recombination that results in the unique sequence of one clone being incorporated into another. Because recombination occurs sporadically and on local scales, these events are often difficult to recognize, even when considering large samples of completely sequenced genomes. Moreover, several processes can produce the appearance of clonality in populations that undergo frequent recombination. The rates and consequences of recombination have been studied in Escherichia coli for over 40 y, and, during this time, there have been several shifting views of its clonal status, population structure, and rates of gene exchange. We reexamine the studies and retrace the evolution of the methods that have assessed the extent of DNA flux, largely focusing on its impact on the E. coli genome.


Assuntos
Escherichia coli/citologia , Células Clonais , Eletroforese , Escherichia coli/genética , Genoma Bacteriano , Tipagem de Sequências Multilocus , Recombinação Genética , Análise de Sequência de DNA
18.
Proc Natl Acad Sci U S A ; 111(46): 16431-5, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368157

RESUMO

Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan.


Assuntos
Especiação Genética , Variação Genética , Hominidae/microbiologia , Intestinos/microbiologia , Microbiota , Primatas/microbiologia , África , América , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Dieta , Fezes/microbiologia , Hominidae/classificação , Humanos , Estilo de Vida , Filogenia , Grupos Populacionais , Primatas/classificação , Especificidade da Espécie , População Urbana , Venezuela
19.
Genome Res ; 23(10): 1715-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23804402

RESUMO

The gut microbial communities within great apes have been shown to reflect the phylogenetic history of their hosts, indicating codiversification between great apes and their gut microbiota over evolutionary timescales. But because the great apes examined to date represent geographically isolated populations whose diets derive from different sources, it is unclear whether this pattern of codiversification has resulted from a long history of coadaptation between microbes and hosts (heritable factors) or from the ecological and geographic separation among host species (environmental factors). To evaluate the relative influences of heritable and environmental factors on the evolution of the great ape gut microbiota, we assayed the gut communities of sympatric and allopatric populations of chimpanzees, bonobos, and gorillas residing throughout equatorial Africa. Comparisons of these populations revealed that the gut communities of different host species can always be distinguished from one another but that the gut communities of sympatric chimpanzees and gorillas have converged in terms of community composition, sharing on average 53% more bacterial phylotypes than the gut communities of allopatric hosts. Host environment, independent of host genetics and evolutionary history, shaped the distribution of bacterial phylotypes across the Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria, the four most common phyla of gut bacteria. Moreover, the specific patterns of phylotype sharing among hosts suggest that chimpanzees living in sympatry with gorillas have acquired bacteria from gorillas. These results indicate that geographic isolation between host species has promoted the evolutionary differentiation of great ape gut bacterial communities.


Assuntos
Bactérias/classificação , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Gorilla gorilla/microbiologia , Microbiota , Pan paniscus/microbiologia , Pan troglodytes/microbiologia , RNA Ribossômico 16S/genética , Simpatria , Actinobacteria/classificação , Actinobacteria/genética , África Central , Animais , Bactérias/genética , Bacteroidetes/classificação , Bacteroidetes/genética , Meio Ambiente , Evolução Molecular , Especiação Genética , Genoma Mitocondrial , Gorilla gorilla/classificação , Gorilla gorilla/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Pan paniscus/classificação , Pan paniscus/genética , Pan troglodytes/classificação , Pan troglodytes/genética , Filogenia , Proteobactérias/classificação , Proteobactérias/genética
20.
Mol Ecol ; 24(3): 690-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25545295

RESUMO

Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV-1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV-1-infected humans and SIVcpz-infected chimpanzees, SIVgor-infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf-based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla-specific enterotype was enabled by lowered immune system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV-1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority.


Assuntos
Bactérias/classificação , Gorilla gorilla/microbiologia , Intestinos/microbiologia , Microbiota , Síndrome de Imunodeficiência Adquirida dos Símios/microbiologia , Animais , Fezes/microbiologia , Gorilla gorilla/virologia , Vírus da Imunodeficiência Símia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA