Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 19(1): 160, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299889

RESUMO

BACKGROUND: All living organisms experience physiological changes regulated by endogenous circadian rhythms. The main factor controlling the circadian clock is the duration of daylight. The aim of this research was to identify the impact of various lighting conditions on physiological parameters and gut microbiota composition in rats. 3 groups of outbred rats were subjected to normal light-dark cycles, darkness and constant lighting. RESULTS: After 1 and 3 months we studied urinary catecholamine levels in rats; indicators of lipid peroxidation and antioxidant activity in the blood; protein levels of BMAL1, CLOCK and THRA in the hypothalamus; composition and functional activity of the gut microbiota. Subjecting the rats to conditions promoting desynchronosis for 3 months caused disruptions in homeostasis. CONCLUSIONS: Changing the lighting conditions led to changes in almost all the physiological parameters that we studied. Catecholamines can be regarded as a synchronization super system of split-level circadian oscillators. We established a correlation between hypothalamic levels of Bmal1 and urinary catecholamine concentrations. The magnitude of changes in the GM taxonomic composition was different for LL/LD and DD/LD but the direction of these changes was similar. As for the predicted functional properties of the GM which characterize its metabolic activity, they didn't change as dramatically as the taxonomic composition. All differences may be viewed as a compensatory reaction to new environmental conditions and the organism has adapted to those conditions.


Assuntos
Catecolaminas/urina , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Escuridão , Luz , Masculino , Ratos
2.
Front Microbiol ; 15: 1416688, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919499

RESUMO

In recent years, there has been an increasing tendency to create drugs based on certain commensal bacteria of the human microbiota and their ingredients, primarily focusing on live biotherapeutics (LBPs) and postbiotics. The creation of such drugs, termed pharmacobiotics, necessitates an understanding of their mechanisms of action and the identification of pharmacologically active ingredients that determine their target properties. Typically, these are complexes of biologically active substances synthesized by specific strains, promoted as LBPs or postbiotics (including vesicles): proteins, enzymes, low molecular weight metabolites, small RNAs, etc. This study employs omics technologies, including genomics, proteomics, and metabolomics, to explore the potential of Limosilactobacillus fermentum U-21 for innovative LBP and postbiotic formulations targeting neuroinflammatory processes. Proteomic techniques identified and quantified proteins expressed by L. fermentum U-21, highlighting their functional attributes and potential applications. Key identified proteins include ATP-dependent Clp protease (ClpL), chaperone protein DnaK, protein GrpE, thioredoxin reductase, LysM peptidoglycan-binding domain-containing protein, and NlpC/P60 domain-containing protein, which have roles in disaggregase, antioxidant, and immunomodulatory activities. Metabolomic analysis provided insights into small-molecule metabolites produced during fermentation, revealing compounds with anti-neuroinflammatory activity. Significant metabolites produced by L. fermentum U-21 include GABA (γ-aminobutyric acid), niacin, aucubin, and scyllo-inositol. GABA was found to stabilize neuronal activity, potentially counteracting neurodegenerative processes. Niacin, essential for optimal nervous system function, was detected in vesicles and culture fluid, and it modulates cytokine production, maintaining immune homeostasis. Aucubin, an iridoid glycoside usually secreted by plants, was identified as having antioxidant properties, addressing issues of bioavailability for therapeutic use. Scyllo-inositol, identified in vesicles, acts as a chemical chaperone, reducing abnormal protein clumps linked to neurodegenerative diseases. These findings demonstrate the capability of L. fermentum U-21 to produce bioactive substances that could be harnessed in the development of pharmacobiotics for neurodegenerative diseases, contributing to their immunomodulatory, anti-neuroinflammatory, and neuromodulatory activities. Data of the HPLC-MS/MS analysis are available via ProteomeXchange with identifier PXD050857.

3.
BioTech (Basel) ; 12(2)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37218756

RESUMO

Many kinds of Lactobacillus are common occupants of humans' digestive tract that support the preservation of a balanced microbial environment that benefits host health. In this study, the unique lactic acid bacterium strain Limosilactobacillus fermentum U-21, which was isolated from the feces of a healthy human, was examined for its metabolite profile in order to compare it to that of the strain L. fermentum 279, which does not have antioxidant (AO) capabilities. By using GC × GC-MS, the metabolite fingerprint of each strain was identified, and the data were then subjected to multivariate bioinformatics analysis. The L. fermentum U-21 strain has previously been shown to possess distinctive antioxidant properties in in vivo and in vitro studies, positioning it as a drug candidate for the treatment of Parkinsonism. The production of multiple distinct compounds is shown by the metabolite analysis, demonstrating the unique characteristics of the L. fermentum U-21 strain. According to reports, some of the L. fermentum U-21 metabolites found in this study have health-promoting properties. The GC × GC-MS-based metabolomic tests defined strain L. fermentum U-21 as a potential postbiotic with significant antioxidant potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA