Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(7): 3634-3644, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30900451

RESUMO

Urban-use pesticides are of increasing concern as they are widely used and have been linked to toxicity of aquatic organisms. To assess the occurrence and treatment of these pesticides in stormwater runoff, an approach combining field sampling and watershed-scale modeling was employed. Stormwater samples were collected at four locations in the lower San Diego River watershed during a storm event and analyzed for fipronil, three of its degradation products, and eight pyrethroids. All 12 compounds were detected with frequency ranging from 50 to 100%. Field results indicate pesticide pollution is ubiquitous at levels above toxicity benchmarks and that runoff may be a major pollutant source to urban surface waters. A watershed-scale stormwater model was developed, calibrated using collected data, and evaluated for pesticide storm load and concentrations under several management scenarios. Modeling results show that enhanced stormwater control measures, such as biochar-amended biofilters, reduce both pesticide storm load and toxicity benchmark exceedances, while conventional biofilters reduce the storm load but provide minimal toxicity benchmark exceedance reduction. Consequently, biochar amendment has the potential to broadly improve water quality at the watershed scale, particularly when meeting concentration-based metrics such as toxicity benchmarks. This research motivates future work to demonstrate the reliability of full-scale enhanced stormwater control measures to treat pollutants of emerging concern.


Assuntos
Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Chuva , Reprodutibilidade dos Testes
2.
Environ Sci Technol ; 53(14): 8068-8077, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31269393

RESUMO

Aqueous film-forming foams (AFFFs) are proprietary mixtures containing hydrocarbon surfactants and per- and polyfluoroalkyl substances (PFASs) that are used to extinguish hydrocarbon-based fuel fires. There is limited information on hydrocarbon surfactants in AFFFs and AFFF-contaminated groundwater even though hydrocarbon surfactants are more abundant (5-10% w/w) than PFASs (0.9-1.5% w/w) in AFFFs. Eight commercial AFFFs manufactured between 1988 and 2012 and 10 AFFF-contaminated groundwaters collected from near source zones of fire-fighter training areas were analyzed for suspect hydrocarbon surfactants by liquid chromatography quadrupole time-of-flight mass spectrometry. A suspect list and a homologous series detection computational tool, enviMass, were combined to screen for hydrocarbon surfactants. Nine classes of hydrocarbon surfactants were detected in AFFFs including octylphenol polyethoxylates, linear alcohol ethoxylates, ethoxylated cocoamines, alkyl ether sulfates, alkyl amido dipropionates, linear alkyl benzenesulfonates, alkyl sulfates, and polyethylene glycols. Of those, six were also found in groundwater along with diethanolamines and alkyl amido betaines, which were not found in the eight archived AFFFs. This indicates that although aerobically biodegradable, hydrocarbon surfactants likely persist in groundwater due to anaerobic aquifer conditions. To the best of our knowledge, this is the first screening for hydrocarbon surfactants in AFFFs and in AFFF-contaminated groundwater.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Hidrocarbonetos , Tensoativos
3.
Environ Sci Technol ; 51(4): 2047-2057, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28098989

RESUMO

Aqueous film-forming foams (AFFFs), containing per- and polyfluoroalkyl substances (PFASs), are released into the environment during response to fire-related emergencies. Repeated historical applications of AFFF at military sites were a result of fire-fighter training exercises and equipment testing. Recent data on AFFF-impacted groundwater indicates that ∼25% of the PFASs remain unidentified. In an attempt to close the mass balance, a systematic evaluation of 3M and fluorotelomer-based AFFFs, commercial products, and AFFF-impacted groundwaters from 15 U.S. military bases was conducted to identify the remaining PFASs. Liquid chromatography quadrupole time-of-flight mass spectrometry was used for compound discovery. Nontarget analysis utilized Kendrick mass defect plots and a "nontarget" R script. Suspect screening compared masses with those of previously reported PFASs. Forty classes of novel anionic, zwitterionic, and cationic PFASs were discovered, and an additional 17 previously reported classes were observed for the first time in AFFF and/or AFFF-impacted groundwater. All 57 classes received an acronym and IUPAC-like name derived from collective author knowledge. Thirty-four of the 40 newly identified PFAS classes derive from electrochemical fluorination (ECF) processes, most of which have the same base structure. Of the newly discovered PFASs found only in AFFF-impacted groundwater, 11 of the 13 classes are ECF-derived, and the remaining two classes are fluorotelomer-derived, which suggests that both ECF- and fluorotelomer-based PFASs are persistent in the environment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Cromatografia Líquida , Água Subterrânea/química , Água
4.
Sci Total Environ ; 645: 229-234, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029106

RESUMO

Hydraulic fracturing wastewaters (HFWWs) contain synthetic organic components and metal ions derived from the formation waters. The risk of spills of HFWW that could impact soil quality and water resources is of great concern. The ability of synthetic components, such as surfactants, in HFWW to be transported through soil and to mobilize metals in soil was examined using column experiments. A spill of HFWW was simulated in bench scale soil column experiments that used an agricultural soil and simulated seven 10-year rain events representing a total of one year's worth of precipitation for Weld County, Colorado. Although no surfactants or their transformation products were found in leachate samples, copper, lead, and iron were mobilized at environmentally relevant concentrations. In general, after the initial spill event, metal concentrations increased until the fourth rain event before decreasing. Results from this study suggest that transport of metals was caused by the high concentrations of salts present in HFWW. This is the first study utilizing authentic HFWWs to investigate the transport of surfactants and their effect on metal mobilization. Importantly, a significant decrease in the water infiltration rate of the soil was observed, leading to the point where water was unable to percolate through due to increasing salinity, potentially having a severe impact on crop production.

5.
Sci Total Environ ; 619-620: 654-664, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156284

RESUMO

Hydraulic fracturing (HF) has allowed for the utilization of previously unattainable shale oil and gas (O&G) resources. After HF is complete, the waters used to increase the facies' permeability return uphole as wastewaters. When these waters return to the surface, they are characterized by complex organic and inorganic chemistry, and can pose a health risk if not handled correctly. Therefore, these waters must be treated or disposed of properly. However, the variability of these waters' chemical composition over time is poorly understood and likely limits the applicability of their reuse. This study examines the water chemistry of a hydraulically fractured site in the Niobrara formation throughout the flowback period. Samples were collected every other day for the first 18days, then on a regular basis for three months. We identified HF fluid additives, including benzalkonium chlorides (BACs), alkyl ethoxylates (AEOs), and polyethylene glycols (PEGs), as well as geogenic components present in flowback and produced waters, their overall temporal pattern, and variables affecting the reuse of these waters. Observations indicate that alkalinity and iron may limit the reuse of these waters in HF, while chloride and alkalinity may limit the use of these waters for well-casing cement. The presence of numerous surfactant homologs, including biocides, was also observed, with the highest levels at the beginning of the flowback period. Principal component analysis identified three unique groupings in the chemical data that correspond to different stages in the flowback period: (1) the flowback stage (days 1-2); (2) the transition stage (days 6-21); and (3) the produced water stage (days 21-87). Results from this study will be important when designing decision frameworks for assessing water treatment options, particularly if onsite treatment is attempted. Successful reclamation of these waters may alleviate stress on water resources that continues to negatively impact the U. S.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA