Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(6): 2274-2287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488789

RESUMO

The 18O enrichment (Δ18O) of cellulose (Δ18OCel) is recognized as a unique archive of past climate and plant function. However, there is still uncertainty regarding the proportion of oxygen in cellulose (pex) that exchanges post-photosynthetically with medium water of cellulose synthesis. Particularly, recent research with C3 grasses demonstrated that the Δ18O of leaf sucrose (Δ18OSuc, the parent substrate for cellulose synthesis) can be much higher than predicted from daytime Δ18O of leaf water (Δ18OLW), which could alter conclusions on photosynthetic versus post-photosynthetic effects on Δ18OCel via pex. Here, we assessed pex in leaves of perennial ryegrass (Lolium perenne) grown at different atmospheric relative humidity (RH) and CO2 levels, by determinations of Δ18OCel in leaves, Δ18OLGDZW (the Δ18O of water in the leaf growth-and-differentiation zone) and both Δ18OSuc and Δ18OLW (adjusted for εbio, the biosynthetic fractionation between water and carbohydrates) as alternative proxies for the substrate for cellulose synthesis. Δ18OLGDZW was always close to irrigation water, and pex was similar (0.53 ± 0.02 SE) across environments when determinations were based on Δ18OSuc. Conversely, pex was erroneously and variably underestimated (range 0.02-0.44) when based on Δ18OLW. The photosynthetic signal fraction in Δ18OCel is much more constant than hitherto assumed, encouraging leaf physiological reconstructions.


Assuntos
Dióxido de Carbono , Celulose , Umidade , Isótopos de Oxigênio , Folhas de Planta , Sacarose , Folhas de Planta/metabolismo , Celulose/metabolismo , Dióxido de Carbono/metabolismo , Sacarose/metabolismo , Isótopos de Oxigênio/metabolismo , Lolium/metabolismo , Lolium/crescimento & desenvolvimento , Lolium/fisiologia , Atmosfera , Fotossíntese , Água/metabolismo
2.
Int J Biometeorol ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850441

RESUMO

Riparian corridors often act as low-land climate refugia for temperate tree species in their southern distribution range. A plausible mechanism is the buffering of regional climate extremes by local physiographic and biotic factors. We tested this idea using a 3-year-long microclimate dataset collected along the Ciron river, a refugia for European beech (Fagus sylvatica) in southwestern France. Across the whole network, canopy gap fraction was the main predictor for spatial microclimatic variations, together with two other landscape features (elevation above the river and woodland fraction within a 300m radius). However, within the riparian forest only (canopy gap fraction < 25%, distance to the river < 150m), variations of up to -4°C and + 15% in summertime daily maximum air temperature and minimum relative humidity, respectively, were still found from the plateau to the cooler, moister river banks, only ~ 5-10m below. Elevation above the river was then identified as the main predictor, and explained the marked variations from the plateau to the banks much better than canopy gap fraction. The microclimate measured near the river is as cool but moister than the macroclimate encountered at 700-1000m asl further east in F. sylvatica's main distribution range. Indeed, at all locations, we found that air relative humidity was higher than expected from a temperature-only effect, suggesting that extra moisture is brought by the river. Our results explain well why beech trees in this climate refugium are restricted to the river gorges where microtopographic variations are the strongest and canopy gaps are rare.

3.
Plant Cell Environ ; 46(9): 2628-2648, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376738

RESUMO

The 18 O enrichment (Δ18 O) of leaf water affects the Δ18 O of photosynthetic products such as sucrose, generating an isotopic archive of plant function and past climate. However, uncertainty remains as to whether leaf water compartmentation between photosynthetic and nonphotosynthetic tissue affects the relationship between Δ18 O of bulk leaf water (Δ18 OLW ) and leaf sucrose (Δ18 OSucrose ). We grew Lolium perenne (a C3 grass) in mesocosm-scale, replicated experiments with daytime relative humidity (50% or 75%) and CO2 level (200, 400 or 800 µmol mol-1 ) as factors, and determined Δ18 OLW , Δ18 OSucrose and morphophysiological leaf parameters, including transpiration (Eleaf ), stomatal conductance (gs ) and mesophyll conductance to CO2 (gm ). The Δ18 O of photosynthetic medium water (Δ18 OSSW ) was estimated from Δ18 OSucrose and the equilibrium fractionation between water and carbonyl groups (εbio ). Δ18 OSSW was well predicted by theoretical estimates of leaf water at the evaporative site (Δ18 Oe ) with adjustments that correlated with gas exchange parameters (gs or total conductance to CO2 ). Isotopic mass balance and published work indicated that nonphotosynthetic tissue water was a large fraction (~0.53) of bulk leaf water. Δ18 OLW was a poor proxy for Δ18 OSucrose , mainly due to opposite Δ18 O responses of nonphotosynthetic tissue water (Δ18 Onon-SSW ) relative to Δ18 OSSW , driven by atmospheric conditions.


Assuntos
Poaceae , Sacarose , Água , Dióxido de Carbono , Isótopos de Oxigênio , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Transpiração Vegetal
4.
New Phytol ; 236(6): 2044-2060, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35575976

RESUMO

We explore needle sugar isotopic compositions (δ18 O and δ13 C) in boreal Scots pine (Pinus sylvestris) over two growing seasons. A leaf-level dynamic model driven by environmental conditions and based on current understanding of isotope fractionation processes was built to predict δ18 O and δ13 C of two hierarchical needle carbohydrate pools, accounting for the needle sugar pool size and the presence of an invariant pinitol pool. Model results agreed well with observed needle water δ18 O, δ18 O and δ13 C of needle water-soluble carbohydrates (sugars + pinitol), and needle sugar δ13 C (R2 = 0.95, 0.84, 0.60, 0.73, respectively). Relative humidity (RH) and intercellular to ambient CO2 concentration ratio (Ci /Ca ) were the dominant drivers of δ18 O and δ13 C variability, respectively. However, the variability of needle sugar δ18 O and δ13 C was reduced on diel and intra-seasonal timescales, compared to predictions based on instantaneous RH and Ci /Ca , due to the large needle sugar pool, which caused the signal formation period to vary seasonally from 2 d to more than 5 d. Furthermore, accounting for a temperature-sensitive biochemical 18 O-fractionation factor and mesophyll resistance in 13 C-discrimination were critical. Interpreting leaf-level isotopic signals requires understanding on time integration caused by mixing in the needle sugar pool.


Assuntos
Pinus sylvestris , Açúcares , Estações do Ano , Isótopos de Carbono/análise , Carboidratos , Folhas de Planta/química , Água
5.
New Phytol ; 233(3): 1121-1132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767646

RESUMO

The long-standing hypothesis that the isotopic composition of plant stem water reflects that of source water is being challenged by studies reporting bulk water from woody stems with an isotopic composition that cannot be attributed to any potential water source. The mechanism behind such source-stem water isotopic offsets is still poorly understood. Using a novel technique to extract selectively sap water from xylem conduits, we show that, in cut stems and potted plants, the isotopic composition of sap water reflects that of irrigation water, demonstrating unambiguously that no isotopic fractionation occurs during root water uptake or sap water extraction. By contrast, water in nonconductive xylem tissues is always depleted in deuterium compared with sap water, irrespective of wood anatomy. Previous studies have shown that isotopic heterogeneity also exists in soils at the pore scale in which water adsorbed onto soil particles is more depleted in deuterium than unbound water. Data collected at a riparian forest indicated that sap water matches best unbound soil water from depth below -70 cm, while bulk stem and soil water differ markedly. We conclude that source-stem isotopic offsets can be explained by micrometre-scale heterogeneity in the isotope ratios of water within woody stems and soil micro-pores.


Assuntos
Árvores , Água , Caules de Planta , Solo , Madeira , Xilema
6.
New Phytol ; 235(1): 41-51, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322882

RESUMO

We compiled hydrogen and oxygen stable isotope compositions (δ2 H and δ18 O) of leaf water from multiple biomes to examine variations with environmental drivers. Leaf water δ2 H was more closely correlated with δ2 H of xylem water or atmospheric vapour, whereas leaf water δ18 O was more closely correlated with air relative humidity. This resulted from the larger proportional range for δ2 H of meteoric waters relative to the extent of leaf water evaporative enrichment compared with δ18 O. We next expressed leaf water as isotopic enrichment above xylem water (Δ2 H and Δ18 O) to remove the impact of xylem water isotopic variation. For Δ2 H, leaf water still correlated with atmospheric vapour, whereas Δ18 O showed no such correlation. This was explained by covariance between air relative humidity and the Δ18 O of atmospheric vapour. This is consistent with a previously observed diurnal correlation between air relative humidity and the deuterium excess of atmospheric vapour across a range of ecosystems. We conclude that 2 H and 18 O in leaf water do indeed reflect the balance of environmental drivers differently; our results have implications for understanding isotopic effects associated with water cycling in terrestrial ecosystems and for inferring environmental change from isotopic biomarkers that act as proxies for leaf water.


Assuntos
Ecossistema , Água , Isótopos de Oxigênio/análise , Folhas de Planta/química , Xilema
7.
New Phytol ; 229(6): 3156-3171, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33251585

RESUMO

We explore here our mechanistic understanding of the environmental and physiological processes that determine the oxygen isotope composition of leaf cellulose (δ18 Ocellulose ) in a drought-prone, temperate grassland ecosystem. A new allocation-and-growth model was designed and added to an 18 O-enabled soil-vegetation-atmosphere transfer model (MuSICA) to predict seasonal (April-October) and multi-annual (2007-2012) variation of δ18 Ocellulose and 18 O-enrichment of leaf cellulose (Δ18 Ocellulose ) based on the Barbour-Farquhar model. Modelled δ18 Ocellulose agreed best with observations when integrated over c. 400 growing-degree-days, similar to the average leaf lifespan observed at the site. Over the integration time, air temperature ranged from 7 to 22°C and midday relative humidity from 47 to 73%. Model agreement with observations of δ18 Ocellulose (R2  = 0.57) and Δ18 Ocellulose (R2  = 0.74), and their negative relationship with canopy conductance, was improved significantly when both the biochemical 18 O-fractionation between water and substrate for cellulose synthesis (εbio , range 26-30‰) was temperature-sensitive, as previously reported for aquatic plants and heterotrophically grown wheat seedlings, and the proportion of oxygen in cellulose reflecting leaf water 18 O-enrichment (1 - pex px , range 0.23-0.63) was dependent on air relative humidity, as observed in independent controlled experiments with grasses. Understanding physiological information in δ18 Ocellulose requires quantitative knowledge of climatic effects on pex px and εbio .


Assuntos
Ecossistema , Água , Celulose , Pradaria , Umidade , Isótopos de Oxigênio , Folhas de Planta , Temperatura
8.
Glob Chang Biol ; 27(11): 2279-2297, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33725415

RESUMO

Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.


Assuntos
Mudança Climática , Microclima , Biodiversidade , Ecossistema , Florestas , Árvores
9.
New Phytol ; 227(3): 766-779, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32239512

RESUMO

A growing number of field studies report isotopic offsets between stem water and its potential sources that prevent the unambiguous identification of plant water origin using water isotopes. We explored the causes of this isotopic offset by conducting a controlled experiment on the temperate tree species Fagus sylvatica. We measured δ2 H and δ18 O of soil and stem water from potted saplings growing on three soil substrates and subjected to two watering regimes. Regardless of substrate, soil and stem water δ2 H were similar only near permanent wilting point. Under moister conditions, stem water δ2 H was 11 ± 3‰ more negative than soil water δ2 H, coherent with field studies. Under drier conditions, stem water δ2 H became progressively more enriched than soil water δ2 H. Although stem water δ18 O broadly reflected that of soil water, soil-stem δ2 H and δ18 O differences were correlated (r = 0.76) and increased with transpiration rates indicated by proxies. Soil-stem isotopic offsets are more likely to be caused by water isotope heterogeneities within the soil pore and stem tissues, which would be masked under drier conditions as a result of evaporative enrichment, than by fractionation under root water uptake. Our results challenge our current understanding of isotopic signals in the soil-plant continuum.


Assuntos
Fagus , Árvores , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise , Solo , Água/análise
10.
Glob Chang Biol ; 26(9): 5235-5253, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32497360

RESUMO

The eddy covariance (EC) technique is used to measure the net ecosystem exchange (NEE) of CO2 between ecosystems and the atmosphere, offering a unique opportunity to study ecosystem responses to climate change. NEE is the difference between the total CO2 release due to all respiration processes (RECO), and the gross carbon uptake by photosynthesis (GPP). These two gross CO2 fluxes are derived from EC measurements by applying partitioning methods that rely on physiologically based functional relationships with a limited number of environmental drivers. However, the partitioning methods applied in the global FLUXNET network of EC observations do not account for the multiple co-acting factors that modulate GPP and RECO flux dynamics. To overcome this limitation, we developed a hybrid data-driven approach based on combined neural networks (NNC-part ). NNC-part incorporates process knowledge by introducing a photosynthetic response based on the light-use efficiency (LUE) concept, and uses a comprehensive dataset of soil and micrometeorological variables as fluxes drivers. We applied the method to 36 sites from the FLUXNET2015 dataset and found a high consistency in the results with those derived from other standard partitioning methods for both GPP (R2  > .94) and RECO (R2  > .8). High consistency was also found for (a) the diurnal and seasonal patterns of fluxes and (b) the ecosystem functional responses. NNC-part performed more realistic than the traditional methods for predicting additional patterns of gross CO2 fluxes, such as: (a) the GPP response to VPD, (b) direct effects of air temperature on GPP dynamics, (c) hysteresis in the diel cycle of gross CO2 fluxes, (d) the sensitivity of LUE to the diffuse to direct radiation ratio, and (e) the post rain respiration pulse after a long dry period. In conclusion, NNC-part is a valid data-driven approach to provide GPP and RECO estimates and complementary to the existing partitioning methods.


Assuntos
Dióxido de Carbono , Ecossistema , Ciclo do Carbono , Redes Neurais de Computação , Fotossíntese , Respiração , Estações do Ano
11.
Glob Chang Biol ; 26(12): 6959-6973, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32902073

RESUMO

The CONterminous United States (CONUS) presents a large range of climate conditions and biomes where terrestrial primary productivity and its inter-annual variability are controlled regionally by rainfall and/or temperature. Here, the response of ecosystem productivity to those climate variables was investigated across different biomes from 2010 to 2018 using three climate datasets of precipitation, air temperature or drought severity, combined with several proxies of ecosystem productivity: a remote sensing product of aboveground biomass, an net primary productivity (NPP) remote sensing product, an NPP model-based product and four gross primary productivity products. We used an asymmetry index (AI) where positive AI indicates a greater increase of ecosystem productivity in wet years compared to the decline in dry years, and negative AI indicates a greater decline of ecosystem productivity in dry years compared to the increase in wet years. We found consistent spatial patterns of AI across the CONUS for the different products, with negative asymmetries over the Great Plains and positive asymmetries over the southwestern CONUS. Shrubs and, to a lesser extent, evergreen forests show a persistent positive asymmetry, whilst (natural) grasslands appear to have transitioned from positive to negative anomalies during the last decade. The general tendency of dominant negative asymmetry response for ecosystem productivity across the CONUS appears to be influenced by the negative asymmetry of precipitation anomalies. AI was found to be a function of mean rainfall: more positive AIs were found in dry areas where plants are adapted to drought and take advantage of rainfall pulses, and more negative AIs were found in wet areas, with a threshold delineating the two regimes corresponding to a mean annual rainfall of 200-400 mm/year.


Assuntos
Clima , Ecossistema , Secas , Florestas , Sudoeste dos Estados Unidos , Estados Unidos
13.
Plant Physiol ; 178(2): 728-752, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30104255

RESUMO

Carbonic anhydrase (CA) activity in leaves catalyzes the 18O exchange between CO2 and water during photosynthesis. This feature has been used to estimate the mesophyll conductance to CO2 (g m) from measurements of online C18OO photosynthetic discrimination (∆18O). Based on CA assays on leaf extracts, it has been argued that CO2 in mesophyll cells should be in isotopic equilibrium with water in most C3 species as well as many C4 dicot species. However, this seems incompatible with ∆18O data that would indicate a much lower degree of equilibration, especially in C4 plants under high light intensity. This apparent contradiction is resolved here using a new model of C3 and C4 photosynthetic discrimination that includes competition between CO2 hydration and carboxylation and the contribution of respiratory fluxes. This new modeling framework is used to revisit previously published data sets on C3 and C4 species, including CA-deficient plants. We conclude that (1) newly ∆18O-derived g m values are usually close but significantly higher (typically 20% and up to 50%) than those derived assuming full equilibration and (2) despite the uncertainty associated with the respiration rate in light, or the water isotope gradient between mesophyll and bundle sheath cells, robust estimates of ∆18O-derived g m can be achieved in both C3 and C4 plants.


Assuntos
Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Plantas/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Isótopos de Oxigênio/análise , Folhas de Planta/metabolismo
14.
J Exp Bot ; 70(5): 1639-1651, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30715494

RESUMO

The primary function of stomata is to minimize plant water loss while maintaining CO2 assimilation. Stomatal water loss incurs an indirect cost to photosynthesis in the form of non-stomatal limitations (NSL) via reduced carboxylation capacity (CAP) and/or mesophyll conductance (MES). Two optimal formulations for stomatal conductance (gs) arise from the assumption of each type of NSL. In reality, both NSL could coexist, but one may prevail for a given leaf ontogenetic stage or plant functional type, depending on leaf morphology. We tested the suitability of two gs formulations (CAP versus MES) on species from six plant functional types (C4 crop, C3 grass, fern, conifer, evergreen, and deciduous angiosperm trees). MES and CAP parameters (the latter proportional to the marginal water cost to carbon gain) decreased with water availability only in deciduous angiosperm trees, while there were no clear differences between leaf ontogenetic stages. Both CAP and MES formulations fit our data in most cases, particularly under low water availability. For ferns, stomata appeared to operate optimally only when subjected to water stress. Overall, the CAP formulation provided a better fit across all species, suggesting that sub-daily stomatal responses minimize NSL by reducing carboxylation capacity predominantly, regardless of leaf morphology and ontogenetic stage.


Assuntos
Estômatos de Plantas/fisiologia , Transpiração Vegetal , Poaceae/fisiologia , Água/fisiologia , Carbono/metabolismo , Pteridium/fisiologia , Especificidade da Espécie , Árvores/fisiologia
15.
New Phytol ; 215(3): 965-976, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28467665

RESUMO

Carbonyl sulphide (COS) is a potential tracer of gross primary productivity (GPP), assuming a unidirectional COS flux into the vegetation that scales with GPP. However, carbonic anhydrase (CA), the enzyme that hydrolyses COS, is expected to be light independent, and thus plants without stomata should continue to take up COS in the dark. We measured net CO2 (AC ) and COS (AS ) uptake rates from two astomatous bryophytes at different relative water contents (RWCs), COS concentrations, temperatures and light intensities. We found large AS in the dark, indicating that CA activity continues without photosynthesis. More surprisingly, we found a nonzero COS compensation point in light and dark conditions, indicating a temperature-driven COS source with a Q10 (fractional change for a 10°C temperature increase) of 3.7. This resulted in greater AS in the dark than in the light at similar RWC. The processes underlying such COS emissions remain unknown. Our results suggest that ecosystems dominated by bryophytes might be strong atmospheric sinks of COS at night and weaker sinks or even sources of COS during daytime. Biotic COS production in bryophytes could result from symbiotic fungal and bacterial partners that could also be found on vascular plants.


Assuntos
Briófitas/metabolismo , Gases/metabolismo , Luz , Óxidos de Enxofre/metabolismo , Água/metabolismo , Briófitas/efeitos da radiação , Carboidratos/análise , Escuridão , Dessecação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Temperatura
16.
Soil Biol Biochem ; 115: 371-382, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29200510

RESUMO

The stable oxygen isotope composition of atmospheric CO2 and the mixing ratio of carbonyl sulphide (OCS) are potential tracers of biospheric CO2 fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, ß and γ) may have different affinities to CO2 and OCS and their expression should also vary between different microbial groups, differences in the community structure could impact the 'community-integrated' CA activity differently for CO2 and OCS. Four soils of different pH were incubated in the dark or with a diurnal cycle for forty days to vary the abundance of native phototrophs. Fluxes of CO2, CO18O and OCS were measured to estimate CA activity alongside the abundance of bacteria, fungi and phototrophs. The abundance of soil phototrophs increased most at higher soil pH. In the light, the strength of the soil CO2 sink and the CA-driven CO2-H2O isotopic exchange rates correlated with phototrophs abundance. OCS uptake rates were attributed to fungi whose abundance was positively enhanced in alkaline soils but only in the presence of increased phototrophs. Our findings demonstrate that soil-atmosphere CO2, OCS and CO18O fluxes are strongly regulated by the microbial community structure in response to changes in soil pH and light availability and supports the idea that different members of the microbial community express different classes of CA, with different affinities to CO2 and OCS.

17.
New Phytol ; 210(2): 485-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27000955

RESUMO

Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates.


Assuntos
Florestas , Temperatura Alta , Pinus/fisiologia , Estações do Ano , Ar , Gases/metabolismo , Umidade , Modelos Lineares , Região do Mediterrâneo , Solo , Pressão de Vapor
18.
New Phytol ; 210(1): 108-21, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26639082

RESUMO

Thinning fosters individual tree growth by increasing the availability of water, light and nutrients. At sites where water rather than light is limiting, thinning also enhances soil evaporation and might not be beneficial. Detailed knowledge of the short- to long-term physiological response underlying the growth responses to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models to study the physiological processes underlying long-term growth enhancement of heavily thinned Pinus sylvestris in a xeric forest in Switzerland. This approach allowed us to identify and disentangle thinning-induced changes in stomatal conductance and assimilation rate. At our xeric study site, the increase in stomatal conductance far outweighed the increase in assimilation, implying that growth release in heavily thinned trees is primarily driven by enhanced water availability rather than increased light availability. We conclude that in forests with relatively isohydric species (drought avoiders) that are growing close to their physiological limits, thinning is recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival of forest trees under drought.


Assuntos
Marcação por Isótopo/métodos , Luz , Pinus sylvestris/fisiologia , Pinus sylvestris/efeitos da radiação , Água/metabolismo , Isótopos de Carbono , Clima , Geografia , Modelos Biológicos , Isótopos de Oxigênio , Folhas de Planta/fisiologia , Estações do Ano , Software , Suíça , Fatores de Tempo , Árvores/fisiologia , Árvores/efeitos da radiação , Xilema/fisiologia
19.
Glob Chang Biol ; 22(2): 889-902, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26391334

RESUMO

Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca  - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca  - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain.


Assuntos
Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Árvores/metabolismo , Isótopos de Carbono/metabolismo , Cycadopsida/metabolismo , Magnoliopsida/metabolismo , Estômatos de Plantas/metabolismo
20.
Plant Cell Environ ; 37(7): 1516-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24372560

RESUMO

Field measurements of photosynthetic carbon isotope discrimination ((13)Δ) of Fagus sylvatica, conducted with branch bags and laser spectrometry, revealed a high variability of (13)Δ, both on diurnal and day-to-day timescales. We tested the prediction capability of three versions of a commonly used model for (13)Δ [called here comprehensive ((13)(Δcomp)), simplified ((13) Δsimple) and revised ((13)(Δrevised)) versions]. A Bayesian approach was used to calibrate major model parameters. Constrained estimates were found for the fractionation during CO(2) fixation in (13)(Δcomp), but not in (13)(Δsimple), and partially for the mesophyll conductance for CO(2)(gi). No constrained estimates were found for fractionations during mitochondrial and photorespiration, and for a diurnally variable apparent fractionation between current assimilates and mitochondrial respiration, specific to (13)(Δrevised). A quantification of parameter estimation uncertainties and interdependencies further helped explore model structure and behaviour. We found that (13)(Δcomp) usually outperformed (13)(Δsimple) because of the explicit consideration of gi and the photorespiratory fractionation in (13)(Δcomp) that enabled a better description of the large observed diurnal variation (≈9‰) of (13)Δ. Flux-weighted daily means of (13)Δ were also better predicted with (13)(Δcomp) than with (13)(Δsimple).


Assuntos
Fagus/fisiologia , Modelos Biológicos , Fotossíntese , Teorema de Bayes , Calibragem , Isótopos de Carbono , Ritmo Circadiano/fisiologia , Bases de Dados como Assunto , Suíça , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA