Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37401458

RESUMO

The recent evolutionary history of the Y chromosome in Drosophila simulans, a worldwide species of Afrotropical origin, is closely linked to that of X-linked meiotic drivers (Paris system). The spread of the Paris drivers in natural populations has elicited the selection of drive-resistant Y chromosomes. To infer the evolutionary history of the Y chromosome in relation to the Paris drive, we sequenced 21 iso-Y lines, each carrying a Y chromosome from a different location. Among them, 13 lines carry a Y chromosome that is able to counteract the effect of the drivers. Despite their very different geographical origins, all sensitive Y's are highly similar, suggesting that they share a recent common ancestor. The resistant Y chromosomes are more divergent and segregate in four distinct clusters. The phylogeny of the Y chromosome confirms that the resistant lineage predates the emergence of Paris drive. The ancestry of the resistant lineage is further supported by the examination of Y-linked sequences in the sister species of D. simulans, Drosophila sechellia and Drosophila mauritiana. We also characterized the variation in repeat content among Y chromosomes and identified multiple simple satellites associated with resistance. Altogether, the molecular polymorphism allows us to infer the demographic and evolutionary history of the Y chromosome and provides new insights on the genetic basis of resistance.


Assuntos
Drosophila simulans , Razão de Masculinidade , Animais , Drosophila simulans/genética , Cromossomo Y/genética , Evolução Biológica , Drosophila/genética
2.
Chromosome Res ; 30(2-3): 141-150, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35635636

RESUMO

Sex-ratio (SR) meiotic drivers are X-linked selfish genetic elements that promote their own transmission by preventing the production of Y-bearing sperm, which usually lowers male fertility. The spread of SR drivers in populations is expected to trigger the evolution of unlinked drive suppressors, a theoretically predicted co-evolution that has been observed in nature. Once completely suppressed, the drivers are expected either to decline if they still affect the fitness of their carriers, or to evolve randomly and possibly get fixed if the suppressors eliminate their deleterious effects. To explore this issue, we used the Paris sex-ratio system of Drosophila simulans in which drive results from the joint effect of two elements on the X chromosome: a segmental duplication and a deficient allele of the HP1D2 gene. We set up six experimental populations starting with 2/3 of X chromosomes carrying both elements (XSR) in a fully suppressing background. We let them evolve independently during almost a hundred generations under strong sexual competition, a condition known to cause the rapid disappearance of unsuppressed Paris XSR in previous experimental populations. In our study, the fate of XSR chromosomes varied among populations, from extinction to their maintenance at a frequency close to the starting one. While the reasons for these variable outcomes are still to be explored, our results show that complete suppression can prevent the demise of an otherwise deleterious XSR chromosome, turning a genetic conflict into cooperation between unlinked loci. Observations in natural populations suggest a contrasting fate of the two elements: disappearance of the duplication and maintenance of deficient HP1D2 alleles.


Assuntos
Drosophila simulans , Drosophila , Animais , Drosophila/genética , Drosophila simulans/genética , Evolução Molecular , Masculino , Meiose , Sêmen , Cromossomo X/genética
3.
Mol Biol Evol ; 36(12): 2668-2681, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31290972

RESUMO

The recent emergence and spread of X-linked segregation distorters-called "Paris" system-in the worldwide species Drosophila simulans has elicited the selection of drive-resistant Y chromosomes. Here, we investigate the evolutionary history of 386 Y chromosomes originating from 29 population samples collected over a period of 20 years, showing a wide continuum of phenotypes when tested against the Paris distorters, from high sensitivity to complete resistance (males sire ∼95% to ∼40% female progeny). Analyzing around 13 kb of Y-linked gene sequences in a representative subset of nine Y chromosomes, we identified only three polymorphic sites resulting in three haplotypes. Remarkably, one of the haplotypes is associated with resistance. This haplotype is fixed in all samples from Sub-Saharan Africa, the region of origin of the drivers. Exceptionally, with the spread of the drivers in Egypt and Morocco, we were able to record the replacement of the sensitive lineage by the resistant haplotype in real time, within only a few years. In addition, we performed in situ hybridization, using satellite DNA probes, on a subset of 21 Y chromosomes from six locations. In contrast to the low molecular polymorphism, this revealed extensive structural variation suggestive of rapid evolution, either neutral or adaptive. Moreover, our results show that intragenomic conflicts can drive astonishingly rapid replacement of Y chromosomes and suggest that the emergence of Paris segregation distorters in East Africa occurred less than half a century ago.


Assuntos
Drosophila/genética , Evolução Molecular , Cromossomo Y , Animais , Feminino , Haplótipos , Masculino , Meiose , Filogeografia , Polimorfismo Genético , Razão de Masculinidade
4.
Heredity (Edinb) ; 122(6): 906-915, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30518968

RESUMO

Meiotic drivers are selfish genetic elements that promote their own transmission into the gametes, which results in intragenomic conflicts. In the Paris sex-ratio system of Drosophila simulans, drivers located on the X chromosome prevent the segregation of the heterochromatic Y chromosome during meiosis II, and hence the production of Y-bearing sperm. The resulting sex-ratio bias strongly impacts population dynamics and evolution. Natural selection, which tends to restore an equal sex ratio, favors the emergence of resistant Y chromosomes and autosomal suppressors. This is the case in the Paris sex-ratio system where the drivers became cryptic in most of the natural populations of D. simulans. Here, we used a quantitative trait locus (QTL) mapping approach based on the analysis of 152 highly recombinant inbred lines (RILs) to investigate the genetic determinism of autosomal suppression. The RILs were derived from an advanced intercross between two parental lines, one showing complete autosomal suppression while the other one was sensitive to drive. The confrontation of RIL autosomes with a reference XSR chromosome allowed us to identify two QTLs on chromosome 2 and three on chromosome 3, with strong epistatic interactions. Our findings highlight the multiplicity of actors involved in this intragenomic battle over the sex ratio.


Assuntos
Drosophila simulans/genética , Meiose , Locos de Características Quantitativas , Cromossomo X/genética , Animais , Mapeamento Cromossômico , Segregação de Cromossomos , Drosophila simulans/classificação , Drosophila simulans/citologia , Evolução Molecular , Feminino , Masculino , Modelos Genéticos , Filogenia , Razão de Masculinidade , Cromossomo Y
5.
Proc Natl Acad Sci U S A ; 113(15): 4110-5, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26979956

RESUMO

Sex chromosome meiotic drive, the non-Mendelian transmission of sex chromosomes, is the expression of an intragenomic conflict that can have extreme evolutionary consequences. However, the molecular bases of such conflicts remain poorly understood. Here, we show that a young and rapidly evolving X-linked heterochromatin protein 1 (HP1) gene, HP1D2, plays a key role in the classical Paris sex-ratio (SR) meiotic drive occurring in Drosophila simulans Driver HP1D2 alleles prevent the segregation of the Y chromatids during meiosis II, causing female-biased sex ratio in progeny. HP1D2 accumulates on the heterochromatic Y chromosome in male germ cells, strongly suggesting that it controls the segregation of sister chromatids through heterochromatin modification. We show that Paris SR drive is a consequence of dysfunctional HP1D2 alleles that fail to prepare the Y chromosome for meiosis, thus providing evidence that the rapid evolution of genes controlling the heterochromatin structure can be a significant source of intragenomic conflicts.


Assuntos
Evolução Molecular , Heterocromatina/metabolismo , Meiose/genética , Cromossomo Y , Animais , Drosophila simulans/classificação , Drosophila simulans/genética , Filogenia
6.
Curr Biol ; 34(5): 1122-1132.e5, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38309271

RESUMO

Social insects' nests harbor intruders known as inquilines,1 which are usually related to their hosts.2,3 However, distant non-social inquilines may also show convergences with their hosts,4,5 although the underlying genomic changes remain unclear. We analyzed the genome of the wingless and blind bee louse fly Braula coeca, an inquiline kleptoparasite of the western honey bee, Apis mellifera.6,7 Using large phylogenomic data, we confirmed recent accounts that the bee louse fly is a drosophilid8,9 and showed that it had likely evolved from a sap-breeder ancestor associated with honeydew and scale insects' wax. Unlike many parasites, the bee louse fly genome did not show significant erosion or strict reliance on an endosymbiont, likely due to a relatively recent age of inquilinism. However, we observed a horizontal transfer of a transposon and a striking parallel evolution in a set of gene families between the honey bee and the bee louse fly. Convergences included genes potentially involved in metabolism and immunity and the loss of nearly all bitter-tasting gustatory receptors, in agreement with life in a protective nest and a diet of honey, pollen, and beeswax. Vision and odorant receptor genes also exhibited rapid losses. Only genes whose orthologs in the closely related Drosophila melanogaster respond to honey bee pheromone components or floral aroma were retained, whereas the losses included orthologous receptors responsive to the anti-ovarian honey bee queen pheromones. Hence, deep genomic convergences can underlie major phenotypic transitions during the evolution of inquilinism between non-social parasites and their social hosts.


Assuntos
Drosophila , Ftirápteros , Abelhas/genética , Animais , Drosophila/genética , Drosophila melanogaster/genética , Ftirápteros/genética , Receptores de Superfície Celular/genética , Genes de Insetos , Feromônios
7.
Mol Ecol ; 22(21): 5352-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24118375

RESUMO

By distorting Mendelian transmission to their own advantage, X-linked meiotic drive elements can rapidly spread in natural populations, generating a sex-ratio bias. One expected consequence is the triggering of a co-evolutionary arms race between the sex chromosome that carries the distorter and suppressors counteracting its effect. Such an arms race has been theoretically and experimentally established and can have many evolutionary consequences. However, its dynamics in contemporary populations is still poorly documented. Here, we investigate the fate of the young X-linked Paris driver in Drosophila simulans from sub-Saharan Africa to the Middle East. We provide the first example of the early dynamics of distorters and suppressors: we find consistent evidence that the driving chromosomes have been rising in the Middle East during the last decade. In addition, identical haplotypes are at high frequencies around the two co-evolving drive loci in remote populations, implying that the driving X chromosomes share a recent common ancestor and suggesting that East Africa could be the cradle of the Paris driver. The segmental duplication associated with drive presents an unusual structure in West Africa, which could reflect a secondary state of the driver. Together with our previous demonstration of driver decline in the Indian Ocean where suppression is complete, these data provide a unique picture of the complex dynamics of a co-evolutionary arms race currently taking place in natural populations of D. simulans.


Assuntos
Drosophila/genética , Evolução Molecular , Genética Populacional , Razão de Masculinidade , Cromossomo X/genética , África Subsaariana , Animais , Duplicação Cromossômica , Haplótipos , Masculino , Oriente Médio , Dados de Sequência Molecular , Análise de Sequência de DNA
8.
Mol Biol Evol ; 28(9): 2461-70, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21498605

RESUMO

Sex-ratio drive, which has been documented in several Drosophila species, is induced by X-linked segregation distorters. Contrary to Mendel's law of independent assortment, the sex-ratio chromosome (X(SR)) is inherited by more than half the offspring of carrier males, resulting in a female-biased sex ratio. This segregation advantage allows X(SR) to spread in populations, even if it is not beneficial for the carriers. In the cosmopolitan species D. simulans, the Paris sex-ratio is caused by recently emerged selfish X(SR) chromosomes. These chromosomes have triggered an intragenomic conflict, and their propagation has been halted over a large area by the evolution of complete drive suppression. Previous molecular population genetics analyses revealed a selective sweep indicating that the invasion of X(SR) chromosomes was very recent in Madagascar (likely less than 100 years ago). Here, we show that X(SR) chromosomes are now declining at this location as well as in Mayotte and Kenya. Drive suppression is complete in the three populations, which display little genetic differentiation and share swept haplotypes, attesting to a common and very recent ancestry of the X(SR) chromosomes. Patterns of DNA sequence variation also indicate a fitness cost of the segmental duplication involved in drive. The data suggest that X(SR) chromosomes started declining first on the African continent, then in Mayotte, and finally in Madagascar and strongly support a scenario of rapid cycling of X chromosomes. Once drive suppression has evolved, standard X(ST) chromosomes locally replace costly X(SR) chromosomes in a few decades.


Assuntos
Drosophila/genética , Evolução Molecular , Razão de Masculinidade , Cromossomo X/genética , Animais , Demografia , Genes Duplicados , Haplótipos , Masculino , Meiose/genética , Modelos Genéticos , Sequências Repetitivas de Ácido Nucleico
9.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37216769

RESUMO

The genomic processes enabling speciation and species coexistence in sympatry are still largely unknown. Here we describe the whole-genome sequencing and assembly of 3 closely related species from the butterfly genus Morpho: Morpho achilles (Linnaeus, 1758), Morpho helenor (Cramer, 1776), and Morpho deidamia (Höbner, 1819). These large blue butterflies are emblematic species of the Amazonian rainforest. They live in sympatry in a wide range of their geographical distribution and display parallel diversification of dorsal wing color pattern, suggesting local mimicry. By sequencing, assembling, and annotating their genomes, we aim at uncovering prezygotic barriers preventing gene flow between these sympatric species. We found a genome size of  480 Mb for the 3 species and a chromosomal number ranging from 2n = 54 for M. deidamia to 2n = 56 for M. achilles and M. helenor. We also detected inversions on the sex chromosome Z that were differentially fixed between species, suggesting that chromosomal rearrangements may contribute to their reproductive isolation. The annotation of their genomes allowed us to recover in each species at least 12,000 protein-coding genes and to discover duplications of genes potentially involved in prezygotic isolation like genes controlling color discrimination (L-opsin). Altogether, the assembly and the annotation of these 3 new reference genomes open new research avenues into the genomic architecture of speciation and reinforcement in sympatry, establishing Morpho butterflies as a new eco-evolutionary model.


Assuntos
Borboletas , Simpatria , Animais , Borboletas/genética , Evolução Biológica , Isolamento Reprodutivo , Cromossomos Sexuais
10.
Ecol Evol ; 12(4): e8821, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432924

RESUMO

Adaptive introgression is ubiquitous in animals, but experimental support for its role in driving speciation remains scarce. In the absence of conscious selection, admixed laboratory strains of Drosophila asymmetrically and progressively lose alleles from one parental species and reproductive isolation against the predominant parent ceases after 10 generations. Here, we selectively introgressed during 1 year light pigmentation genes of D. santomea into the genome of its dark sibling D. yakuba, and vice versa. We found that the pace of phenotypic change differed between the species and the sexes and identified through genome sequencing common as well as distinct introgressed loci in each species. Mating assays showed that assortative mating between introgressed flies and both parental species persisted even after 4 years (~60 generations) from the end of the selection. Those results indicate that selective introgression of as low as 0.5% of the genome can beget morphologically distinct and reproductively isolated strains, two prerequisites for the delimitation of new species. Our findings hence represent a significant step toward understanding the genome-wide dynamics of speciation-through-introgression.

11.
Genetica ; 139(4): 465-77, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21424276

RESUMO

Sequence differentiation has been widely studied between populations and species, whereas interest in expression divergence is relatively recent. Using microarrays, we compared four geographically distinct populations of Drosophila simulans and a population of Drosophila sechellia, and interspecific hybrids. We observed few differences between populations, suggesting a slight population structure in D. simulans. This structure was observed in direct population comparisons, as well as in interspecific comparisons (hybrids vs. parents, D. sechellia vs. D. simulans). Expression variance is higher in the French and Zimbabwean populations than in the populations from the ancestral range of D. simulans (Kenya and Seychelles). This suggests a large scale phenomenon of decanalization following the invasion of a new environment. Comparing D. simulans and D. sechellia, we revealed 304 consistently differentially expressed genes, with striking overrepresentation of genes of the cytochrome P450 family, which could be related to their role in detoxification as well as in hormone regulation. We also revealed differences in genes involved in Juvenile hormone and Dopamine differentiation. We finally observed very few differentially expressed genes between hybrids and parental populations, with an overrepresentation of X-linked genes.


Assuntos
Quimera/genética , Drosophila/genética , Perfilação da Expressão Gênica , Genética Populacional , Animais , Feminino , Regulação da Expressão Gênica/genética , Variação Genética , Masculino
12.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33963397

RESUMO

The Mediterranean corn borer (Sesamia nonagrioides, Noctuidae, Lepidoptera) is a major pest of maize in Europe and Africa. Here, we report an assembly of the nuclear and mitochondrial genome of a pool of inbred males and females third-instar larvae, based on short- and long-read sequencing. The complete mitochondrial genome is 15,330 bp and contains all expected 13 and 24 protein-coding and RNA genes, respectively. The nuclear assembly is 1021 Mb, composed of 2553 scaffolds and it has an N50 of 1105 kb. It is more than twice larger than that of all Noctuidae species sequenced to date, mainly due to a higher repeat content. A total of 17,230 protein-coding genes were predicted, including 15,776 with InterPro domains. We provide detailed annotation of genes involved in sex determination (doublesex, insulin-like growth factor 2 mRNA-binding protein, and P-element somatic inhibitor) and of alpha-amylase genes possibly involved in interaction with parasitoid wasps. We found no evidence of recent horizontal transfer of bracovirus genes from parasitoid wasps. These genome assemblies provide a solid molecular basis to study insect genome evolution and to further develop biocontrol strategies against S. nonagrioides.


Assuntos
Genoma Mitocondrial , Mariposas , Vespas , Animais , Zea mays/genética , Mariposas/genética , Vespas/genética , Larva
13.
Mol Biol Evol ; 25(2): 409-16, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18071199

RESUMO

A way to identify loci subject to positive selection is to detect the signature of selective sweeps in given chromosomal regions. It is revealed by the departure of DNA polymorphism patterns from the neutral equilibrium predicted by coalescent theory. We surveyed DNA sequence variation in a region formerly identified as causing "sex-ratio" meiotic drive in Drosophila simulans. We found evidence that this system evolved by positive selection at 2 neighboring loci, which thus appear to be required simultaneously for meiotic drive to occur. The 2 regions are approximately 150-kb distant, corresponding to a genetic distance of 0.1 cM. The presumably large transmission advantage of chromosomes carrying meiotic drive alleles at both loci has not erased the individual signature of selection at each locus. This chromosome fragment combines a high level of linkage disequilibrium between the 2 critical regions with a high recombination rate. As a result, 2 characteristic traits of selective sweeps--the reduction of variation and the departure from selective neutrality in haplotype tests--show a bimodal pattern. Linkage disequilibrium level indicates that, in the natural population from Madagascar used in this study, the selective sweep may be as recent as 100 years.


Assuntos
Drosophila/genética , Meiose/genética , Modelos Genéticos , Polimorfismo Genético , Recombinação Genética/genética , Razão de Masculinidade , Animais , Desequilíbrio de Ligação , Dados de Sequência Molecular
14.
Gene ; 393(1-2): 116-26, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17382490

RESUMO

Transposable elements (TEs), represent a large fraction of the eukaryotic genome. In Drosophila melanogaster, about 20% of the genome corresponds to such middle repetitive DNA dispersed sequences. A fraction of TEs is composed of elements showing a retrovirus-like structure, the LTR-retrotransposons, the first TEs to be described in the Drosophila genome. Interestingly, in D. melanogaster embryonic immortal cell culture genomes the copy number of these LTR-retrotransposons was revealed to be higher than the copy number in the Drosophila genome, presumably as the result of transposition of some copies to new genomic locations [Potter, S.S., Brorein Jr., W.J., Dunsmuir, P., Rubin, G.M., 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415-427; Junakovic, N., Di Franco, C., Best-Belpomme, M., Echalier, G., 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97, 212-218]. This suggests that so many transpositions modified the genome organisation and consequently the expression of targeted genes. To understand what has directed the transposition of TEs in Drosophila cell culture genomes, a search to identify the newly transposed copies was undertaken using 1731, a LTR-retrotransposon. A comparison between 1731 full-length elements found in the fly sequenced genome (y(1); cn(1)bw(1), sp(1) stock) and 1731 full-length elements amplified by PCR in the two cell line was done. The resulting data provide evidence that all 1731 neocopies were derived from a single copy slightly active in the Drosophila genome and subsequently strongly activated in cultured cells; and that this active copy is related to a newly evolved genomic variant (Kalmykova, A.I., et al., 2004. Selective expansion of the newly evolved genomic variants of retrotransposon 1731 in the Drosophila genomes. Mol. Biol. Evol. 21, 2281-2289). Moreover, neocopies are shown to be inserted in different sets of genes in the two cell lines suggesting they might be involved in the biological and physiological differences observed between Kc and S2 cell lines.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Amplificação de Genes/genética , Genoma de Inseto/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Animais , Sequência de Bases , Células Cultivadas , Mudança da Fase de Leitura do Gene Ribossômico/genética , Dados de Sequência Molecular , Mutagênese Insercional , Análise de Sequência de DNA
15.
Genetics ; 174(3): 1365-71, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16387875

RESUMO

Sex-ratio meiotic drive is the preferential transmission of the X chromosome by XY males, which occurs in several Drosophila species and results in female-biased progeny. Although the trait has long been known to exist, its molecular basis remains completely unknown. Here we report a fine-mapping experiment designed to characterize the major drive locus on a sex-ratio X chromosome of Drosophila simulans originating from the Seychelles (XSR6). This primary locus was found to contain two interacting elements at least, both of which are required for drive expression. One of them was genetically tracked to a tandem duplication containing six annotated genes (Trf2, CG32712, CG12125, CG1440, CG12123, org-1), and the other to a candidate region located approximately 110 kb away and spanning seven annotated genes. RT-PCR showed that all but two of these genes were expressed in the testis of both sex-ratio and standard males. In situ hybridization to polytene chromosomes revealed a complete association of the duplication with the sex-ratio trait in random samples of X chromosomes from Madagascar and Reunion.


Assuntos
Drosophila/genética , Meiose , Mapeamento Físico do Cromossomo , Razão de Masculinidade , Cromossomo X , Animais , Sequência de Bases , Cromossomos , Drosophila/citologia , Feminino , Corantes Fluorescentes , Duplicação Gênica , Genes de Insetos , Marcadores Genéticos , Hibridização In Situ , Indóis , Masculino , Dados de Sequência Molecular , Recombinação Genética
16.
G3 (Bethesda) ; 1(5): 401-10, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22384350

RESUMO

Sex-ratio distorters are X-linked selfish genetic elements that facilitate their own transmission by subverting Mendelian segregation at the expense of the Y chromosome. Naturally occurring cases of sex-linked distorters have been reported in a variety of organisms, including several species of Drosophila; they trigger genetic conflict over the sex ratio, which is an important evolutionary force. However, with a few exceptions, the causal loci are unknown. Here, we molecularly characterize the segmental duplication involved in the Paris sex-ratio system that is still evolving in natural populations of Drosophila simulans. This 37.5 kb tandem duplication spans six genes, from the second intron of the Trf2 gene (TATA box binding protein-related factor 2) to the first intron of the org-1 gene (optomotor-blind-related-gene-1). Sequence analysis showed that the duplication arose through the production of an exact copy on the template chromosome itself. We estimated this event to be less than 500 years old. We also detected specific signatures of the duplication mechanism; these support the Duplication-Dependent Strand Annealing model. The region at the junction between the two duplicated segments contains several copies of an active transposable element, Hosim1, alternating with 687 bp repeats that are noncoding but transcribed. The almost-complete sequence identity between copies made it impossible to complete the sequencing and assembly of this region. These results form the basis for the functional dissection of Paris sex-ratio drive and will be valuable for future studies designed to better understand the dynamics and the evolutionary significance of sex chromosome drive.

17.
Mol Ecol Resour ; 8(3): 491-501, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-21585826

RESUMO

Comparing introduced to ancestral populations within a phylogeographical context is crucial in any study aiming to understand the ecological genetics of an invasive species. Zaprionus indianus is a cosmopolitan drosophilid that has recently succeeded to expand its geographical range upon three continents (Africa, Asia and the Americas). We studied the distribution of mitochondrial DNA (mtDNA) haplotypes for two genes (CO-I and CO-II) among 23 geographical populations. mtDNA revealed the presence of two well-supported phylogenetic lineages (phylads), with bootstrap value of 100%. Phylad I included three African populations, reinforcing the African-origin hypothesis of the species. Within phylad II, a distinct phylogeographical pattern was discovered: Atlantic populations (from the Americas and Madeira) were closer to the ancestral African populations than to Eastern ones (from Madagascar, Middle East and India). This means that during its passage from endemism to cosmopolitanism, Z. indianus exhibited two independent radiations, the older (the Eastern) to the East, and the younger (the Atlantic) to the West. Discriminant function analysis using 13 morphometrical characters was also able to discriminate between the two molecular phylads (93.34 ± 1.67%), although detailed morphological analysis of male genitalia using scanning electron microscopy showed no significant differences. Finally, crossing experiments revealed the presence of reproductive barrier between populations from the two phylads, and further between populations within phylad I. Hence, a bona species status was assigned to two new, cryptic species: Zaprionus africanus and Zaprionus gabonicus, and both were encompassed along with Z. indianus and Zaprionus megalorchis into the indianus complex. The ecology of these two species reveals that they are forest dwellers, which explains their restricted endemic distribution, in contrast to their relative cosmopolitan Z. indianus, known to be a human-commensal. Our results reconfirm the great utility of mtDNA at both inter- and intraspecific analyses within the frame of an integrated taxonomical project.

18.
Mol Phylogenet Evol ; 47(3): 903-15, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18462955

RESUMO

A molecular phylogeny for the drosophilid genus Zaprionus was inferred using a mitochondrial (CO-II) and a nuclear (Amyrel) gene using 22 available species. The combined molecular tree does not support the current classification, dubbed phylogenetic, based entirely upon a morphocline of forefemoral ornamentation. For species for which DNA was not available, phylogenetic positioning was only assigned using morphological characters. In order to avoid conflict between DNA and morphology in the combined analyses (supermatrix method), we developed a new method in which few morphological characters were sampled according to an a priori homoplasy assessment on the consensus molecular tree. At each internal node of the tree, a number of synapomorphies was determined, and species with no molecular sequences were grafted thereon. Analogously to tree vocabulary, we called our method 'morphological grafting'. New species groups and complexes were then defined in the light of our findings. Further, divergence times were estimated under a relaxed molecular clock, and historical biogeography was reconstructed under a maximum likelihood model. Zaprionus appears to be of recent origin in the Oriental region during the Late Miocene ( approximately 10 MYA), and colonization of Africa started shortly after ( approximately 7 MYA) via the maritime route of the Indian Ocean Islands. Most of the morphological and ecological diversification took place, later, in Western Africa during the Quaternary cyclic climatic changes. Furthermore, some species became recent invaders, with one, Zaprionus indianus, has successfully invaded South and North America during the last decade.


Assuntos
Drosophilidae/genética , Evolução Molecular , Filogenia , Animais , Sequência Consenso , Geografia , Funções Verossimilhança , Fatores de Tempo
19.
J Cell Sci ; 116(Pt 9): 1667-78, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12665548

RESUMO

Cell cycle dynamics and localization of condensins--multiprotein complexes involved in late stages of mitotic chromosome condensation--were studied in Xenopus laevis XL2 cell line. Western blot analysis of synchronized cells showed that the ratio of levels of both pEg7 and XCAP-E to beta-tubulin levels remains almost constant from G1 to M phase. pEg7 and XCAP-E were localized to the mitotic chromosomes and were detected in interphase nuclei. Immunostaining for condensins and nucleolar proteins UBF, fibrillarin and B23 revealed that both XCAP-E and pEg7 are localized in the granular component of the nucleolus. Nucleolar labeling of both proteins is preserved in segregated nucleoli after 6 hours of incubation with actinomycin D (5 mg/ml), but the size of the labeled zone was significantly smaller. The data suggest a novel interphase function of condensin subunits in spatial organization of the nucleolus and/or ribosome biogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , Proteínas do Ovo/metabolismo , Interfase/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Xenopus , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte/química , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/química , Linhagem Celular , Cromossomos/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas do Ovo/química , Substâncias Macromoleculares , Microscopia Imunoeletrônica , Complexos Multiproteicos , Proteínas Nucleares/química , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Transcrição Gênica , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA