Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(10): 4899-4913, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36999590

RESUMO

Because DNA double-strand breaks (DSBs) greatly threaten genomic integrity, effective DNA damage sensing and repair are essential for cellular survival in all organisms. However, DSB repair mainly occurs during interphase and is repressed during mitosis. Here, we show that, unlike mitotic cells, oocytes can repair DSBs during meiosis I through microtubule-dependent chromosomal recruitment of the CIP2A-MDC1-TOPBP1 complex from spindle poles. After DSB induction, we observed spindle shrinkage and stabilization, as well as BRCA1 and 53BP1 recruitment to chromosomes and subsequent DSB repair during meiosis I. Moreover, p-MDC1 and p-TOPBP1 were recruited from spindle poles to chromosomes in a CIP2A-dependent manner. This pole-to-chromosome relocation of the CIP2A-MDC1-TOPBP1 complex was impaired not only by depolymerizing microtubules but also by depleting CENP-A or HEC1, indicating that the kinetochore/centromere serves as a structural hub for microtubule-dependent transport of the CIP2A-MDC1-TOPBP1 complex. Mechanistically, DSB-induced CIP2A-MDC1-TOPBP1 relocation is regulated by PLK1 but not by ATM activity. Our data provide new insights into the critical crosstalk between chromosomes and spindle microtubules in response to DNA damage to maintain genomic stability during oocyte meiosis.


Assuntos
Cromossomos , Reparo do DNA , Microtúbulos , Oócitos , Centrômero , Dano ao DNA , Meiose , Fuso Acromático/genética , Polos do Fuso , Animais , Camundongos , Complexos Multiproteicos , Cromossomos/metabolismo
2.
Development ; 147(8)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341029

RESUMO

Mammalian oocytes are arrested at G2/prophase of the first meiosis. After a hormone surge, oocytes resume meiosis, undergoing germinal vesicle breakdown (GVBD). This process is regulated by Cdk1/cyclin B1. Here, we report that Mis12 is required for G2/M transition by regulating cyclin B1 accumulation via Cdc14B-mediated APC/CCdh1 regulation, but is not essential for spindle and chromosome dynamics during meiotic maturation. Depletion of Mis12 severely compromised GVBD by impairing cyclin B1 accumulation. Importantly, impaired GVBD after Mis12 depletion was rescued not only by overexpressing cyclin B1 but also by depleting Cdc14B or Cdh1. Notably, oocytes rescued by cyclin B1 overexpression exhibited normal spindle and chromosome organization with intact kinetochore-microtubule attachments. In addition, after being rescued by cyclin B1 overexpression, Mis12-depleted oocytes normally extruded polar bodies. Moreover, Mis12-depleted oocytes formed pronuclear structures after fertilization but failed to develop beyond zygotes. Interestingly, Mis12 was localized in the cytoplasm and spindle poles in oocytes, in contrast to kinetochore localization in somatic cells. Therefore, our results demonstrate that Mis12 is required for meiotic G2/M transition but is dispensable for meiotic progression through meiosis I and II.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclina B1/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fase G2 , Meiose , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/metabolismo , Animais , Feminino , Cinetocoros/metabolismo , Camundongos , Modelos Biológicos , Membrana Nuclear/metabolismo , Estabilidade Proteica , Fuso Acromático/metabolismo , Polos do Fuso/metabolismo
3.
BMC Cancer ; 23(1): 1263, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129815

RESUMO

BACKGROUND: The maintenance of spindle pole integrity is essential for spindle assembly and chromosome segregation during mitosis. However, the underlying mechanisms governing spindle pole integrity remain unclear. METHODS: ENSA was inhibited by siRNA or MKI-2 treatment and its effect on cell cycle progression, chromosome alignment and microtubule alignment was observed by immunohistochemical staining and western blotting. PP2A-B55α knockdown by siRNA was performed to rescue the phenotype caused by ENSA inhibition. The interaction between ENSA and Aurora A was detected by in situ PLA. Furthermore, orthotopic implantation of 4Tl-luc cancer cells was conducted to confirm the consistency between the in vitro and in vivo relationship of the ENSA-Aurora A interaction. RESULTS: During mitosis, p-ENSA is localized at the spindle poles, and the inhibition of ENSA results in mitotic defects, such as misaligned chromosomes, multipolar spindles, asymmetric bipolar spindles, and centrosome defects, with a delay in mitotic progression. Although the mitotic delay caused by ENSA inhibition was rescued by PP2A-B55α depletion, spindle pole defects persisted. Notably, we observed a interaction between ENSA and Aurora A during mitosis, and inhibition of ENSA reduced Aurora A expression at the mitotic spindle poles. Injecting MKI-2-sensitized tumors led to increased chromosomal instability and downregulation of the MASTL-ENSA-Aurora A pathway in an orthotopic breast cancer mouse model. CONCLUSIONS: These findings provide novel insights into the regulation of spindle pole integrity by the MASTL-ENSA-Aurora A pathway during mitosis, highlighting the significance of ENSA in recruiting Aurora A to the spindle pole, independent of PP2A-B55α.


Assuntos
Fuso Acromático , Polos do Fuso , Animais , Camundongos , Fuso Acromático/metabolismo , Polos do Fuso/metabolismo , Centrossomo/metabolismo , Mitose , RNA Interferente Pequeno/metabolismo
4.
Cell Mol Life Sci ; 79(4): 200, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35320416

RESUMO

Mammalian oocytes are particularly susceptible to accumulating DNA damage. However, unlike mitotic cells in which DNA damage induces G2 arrest by activating the ATM-Chk1/2-Cdc25 pathway, oocytes readily enter M-phase immediately following DNA damage. This implies a lack of a robust canonical G2/M DNA damage checkpoint in oocytes. Here we show that MDC1 plays a non-canonical role in controlling G2/M transition by regulating APC/C-Cdh1-mediated cyclin B1 degradation in response to DNA damage in mouse oocytes. Depletion of MDC1 impaired M-phase entry by decreasing cyclin B1 levels via the APC/C-Cdh1 pathway. Notably, the APC/C-Cdh1 regulation mediated by MDC1 was achieved by a direct interaction between MDC1 and APC/C-Cdh1. This interaction was transiently disrupted after DNA damage with a concomitant increase in Cdh1 levels, which, in turn, decreased cyclin B1 levels and delayed M-phase entry. Moreover, MDC1 depletion impaired spindle assembly by decreasing the integrity of microtubule organizing centers (MTOCs). Therefore, our results demonstrate that MDC1 is an essential molecule in regulating G2/M transition in response to DNA damage and in regulating spindle assembly in mouse oocytes. These results provide new insights into the regulation of the G2/M DNA damage checkpoint and cell cycle control in oocytes.


Assuntos
Proteínas de Ciclo Celular , Oócitos , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Dano ao DNA , Mamíferos/metabolismo , Camundongos , Oócitos/metabolismo
5.
J Cell Physiol ; 237(1): 833-845, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407217

RESUMO

A prolonged time span between ovulation and fertilization can cause postovulatory aging of oocytes, which impairs oocyte quality and subsequent embryo development. Telomere attrition has long been considered as the primary hallmark of aging or the cause of age-associated diseases. However, the status of telomere and its regulation during postovulatory oocyte aging are poorly understood. Here we found that oocytes experience telomere shortening during postovulatory aging, although they have the capacity to maintain telomere length. However, translationally controlled tumor protein (TCTP) overexpression could reverse age-associated telomere shortening by upregulating telomerase activity in mouse oocytes. Telomere length in mature oocytes gradually decreased with postovulatory aging, which was associated with a marked reduction in TRF1 expression, decreased telomerase activity, and decreased homologous combination (HR)-based alternative lengthening of telomeres (ALT) with a concomitant increase in oxidative stress. Surprisingly, however, overexpression of TCTP led to a remarkable increase in telomere length during postovulatory aging. Notably, neither TRF1 nor BRCA1 level was altered by TCTP overexpression. Moreover, TCTP-mediated telomere lengthening was not blocked by HR inhibition. In striking contrast, telomerase activity, as well as TERT and TERC levels, increased after TCTP overexpression. Importantly, unlike the chromosome-wide distribution of endogenous TCTP, overexpressed TCTP was ectopically localized at telomeres, implying that TCTP overexpression is required to increase telomerase activity. Collectively, our results demonstrate that TCTP prevents telomere attrition during postovulatory aging by upregulating telomerase activity in mouse oocytes.


Assuntos
Telomerase , Proteína Tumoral 1 Controlada por Tradução/metabolismo , Animais , Feminino , Camundongos , Oócitos/metabolismo , Oogênese , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Encurtamento do Telômero
6.
Biochem Biophys Res Commun ; 636(Pt 2): 24-30, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36343487

RESUMO

Although radiotherapy (RT) increases the extra centrosomes of cancer cells compared to normal cells, centrosome clustering of cancer cells with amplified centrosomes ensures bipolar mitosis for cell proliferation in response to RT. Recent evidence suggests that centrosome clustering is a tumor-selective target for improving RT in breast cancer cells. However, whether centrosome de-clustering is involved in the activation of innate immunity in response to RT remains unknown. In this study, we showed that centrosome de-clustering of irradiated cancer cells modulates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated innate immunity in monocytes and macrophages after co-culture. Centrosome de-clustering intensifies mitotic abnormalities and cytosolic dsDNA in breast cancer cells in response to irradiation. Unexpectedly, centrosome de-clustering did not modulate the cGAS-STING signaling pathway in irradiated breast cancer cells. Importantly, centrosome de-clustering activated the cGAS-STING signaling pathway in human monocytes and mouse macrophages after co-culture with irradiated breast cancer cells. Thus, our data provide the first evidence that centrosome de-clustering of irradiated breast cancer cells induces innate immunity in tumor-associated immune cells.


Assuntos
Neoplasias da Mama , Centrossomo , Imunidade Inata , Proteínas de Membrana , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/radioterapia , Centrossomo/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo
7.
Development ; 144(20): 3829-3839, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28935709

RESUMO

In somatic cells spindle microtubules are nucleated from centrosomes that act as major microtubule organizing centers (MTOCs), whereas oocytes form meiotic spindles by assembling multiple acentriolar MTOCs without canonical centrosomes. Aurora A and Plk1 are required for these events, but the underlying mechanisms remain largely unknown. Here we show that CIP2A regulates MTOC organization by recruiting aurora A and Plk1 at spindle poles during meiotic maturation. CIP2A colocalized with pericentrin at spindle poles with a few distinct cytoplasmic foci. Although CIP2A has been identified as an endogenous inhibitor of protein phosphatase 2A (PP2A), overexpression of CIP2A had no effect on meiotic maturation. Depletion of CIP2A perturbed normal spindle organization and chromosome alignment by impairing MTOC organization. Importantly, CIP2A was reciprocally associated with CEP192, promoting recruitment of aurora A and Plk1 at MTOCs. CIP2A was phosphorylated by Plk1 at S904, which targets CIP2A to MTOCs and facilitates MTOC organization with CEP192. Our results suggest that CIP2A acts as a scaffold for CEP192-mediated MTOC assembly by recruiting Plk1 and aurora A during meiotic maturation in mouse oocytes.


Assuntos
Aurora Quinase A/genética , Autoantígenos/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Membrana/fisiologia , Centro Organizador dos Microtúbulos , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Antígenos/metabolismo , Autoantígenos/genética , Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Citoplasma/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Meiose , Proteínas de Membrana/genética , Camundongos , Microtúbulos/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno/metabolismo , Fuso Acromático/metabolismo , Quinase 1 Polo-Like
8.
FASEB J ; 33(10): 11326-11337, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31322925

RESUMO

In mammals, the early embryo travels down the oviduct to the uterus and prepares for implantation. The unique features of preimplantation development include compaction followed by blastocyst formation. This first cell lineage specification involves various proteins including cell polarity regulators, kinases, and transcription factors. In this study, a novel gene named predicted gene 11545 (Gm11545) expressed predominantly in mouse early embryos was identified and characterized at the transcript, protein, cellular, and functional levels. The Gm11545 protein localized to both cytoplasmic and membrane regions of preimplantation embryos. Remarkably, knockdown of Gm11545 led to arrest of mouse embryos at the morula stage and consequent impairment of blastocyst formation. Expression patterns of the key transcription factors critical for early lineage specification, octamer-binding transcription factor 4 and caudal type homeobox 2, were affected by Gm11545 depletion. Based on the collective findings, we propose that the novel protein identified in this study, Gm11545, is implicated in cell proliferation and cell lineage specification critical for blastocyst formation.-Kim, J., Kim, J., Jeong, J., Hong, S. H., Kim, D., Choi, S., Choi, I., Oh, J. S., Cho, C. Identification of a novel embryo-prevalent gene, Gm11545, involved in preimplantation embryogenesis in mice.


Assuntos
Blastocisto/fisiologia , Implantação do Embrião/genética , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/genética , Fatores de Transcrição/genética , Animais , Linhagem da Célula/genética , Polaridade Celular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos
9.
Histochem Cell Biol ; 152(3): 207-215, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31250100

RESUMO

Faithful chromosome segregation during the cell cycle is ensured by the spindle assembly checkpoint (SAC). Although SAC activity is highly conserved and most organisms share common SAC components, additional proteins that regulate SAC activity to ensure high fidelity chromosome segregation are present in higher eukaryotes. Zw10 is one of these additional SAC components. Although Zw10 has been demonstrated to be involved in SAC activity during mitosis, little is known about its role during oocyte meiosis. Here, we report that Zw10 is localized at the kinetochore and is required for SAC activation during meiotic maturation. Knockdown of Zw10 led to precocious polar body extrusion by impairing Mad2 recruitment at kinetochores. Moreover, Zw10 knockdown impaired chromosome alignment and kinetochore-microtubule attachment, increasing the incidence of aneuploidy. Furthermore, Zw10 expression decreased with maternal age, suggesting that Zw10 is associated with the age-related increase in the incidence of aneuploidy. Together, our results demonstrate that Zw10 is localized at kinetochores and functions as an essential SAC component in mouse oocytes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Oócitos/citologia , Oócitos/metabolismo , Animais , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Feminino , Pontos de Checagem da Fase M do Ciclo Celular/genética , Meiose/genética , Camundongos
10.
J Pineal Res ; 67(4): e12603, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31370106

RESUMO

Mammalian oocytes remain arrested at the first prophase of meiosis in ovarian follicles for an extended period. During this protracted arrest, oocytes are remarkably susceptible to the accumulation of DNA damage. Melatonin (N-acetyl-5-methoxytryptamine), a hormone secreted by the pineal gland, has diverse effects on various physiological processes. However, the effect of melatonin on DNA damage response in mammalian oocytes has not been explored. Here, we showed that melatonin protected mouse oocytes from DNA damage induced by double-strand breaks (DSBs) during prophase arrest and subsequently improved oocyte quality. We found that DNA damage during prophase arrest impaired subsequent meiotic maturation and deteriorated oocyte quality, increasing chromosome fragmentation, spindle abnormality, mitochondrial aggregation, and oxidative stress. However, melatonin treatment during DNA damage accumulation at prophase improved meiotic maturation and relieved the quality decline of oocytes. In addition, melatonin inhibited the accumulation of DNA damage during prophase arrest by reducing the γ-H2AX levels. Although activated ATM levels were decreased by melatonin treatment, the effect of melatonin on DNA damage response was not a direct consequence of ATM inhibition. Instead, melatonin enhanced DNA repair via nonhomologous end-joining (NHEJ) pathway. Interestingly, these actions of melatonin on DNA damage response are receptor-independent in mouse oocytes. Therefore, our results demonstrated that melatonin protects oocytes from DNA damage during prophase arrest by enhancing DNA repair via NHEJ and subsequently prevents the deterioration of oocyte quality during meiotic maturation.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Melatonina/farmacologia , Oócitos/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos ICR , Oócitos/patologia
12.
Sensors (Basel) ; 19(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491964

RESUMO

The globalization of food distribution has made necessary to secure safe products to the general consumers through the rapid detection of harmful additives on the field. For this purpose, we developed a cuvette-type localized surface plasmon resonance (LSPR) sensor that can be easily used by consumers with conventional ultraviolet-visible light spectrophotometer for in-situ measurements. Gold nanoparticles were uniformly deposited on a transparent substrate via a self-assembly method to obtain a plasmonically active chip, and the chemical receptor p-nitroaniline (p-NA) was functionalized to stabilize the device sensitivity under external temperature and pH conditions. The fabricated chip was fixed onto a support and combined with a cuvette-type LSPR sensor. To evaluate the applicability of this sensor on the field, sensitivity and quantitative analysis experiments were conducted onto melamine as a model sample from harmful food additives. Under optimal reaction condition (2 mM p-NA for 20 min), we achieved an excellent detection limit (0.01 ppb) and a dynamic range allowing quantitative analysis over a wide concentration range (0.1-1000 ppb) from commercially available milk powder samples.


Assuntos
Técnicas Biossensoriais , Fórmulas Infantis/química , Triazinas/isolamento & purificação , Animais , Ouro/química , Humanos , Lactente , Limite de Detecção , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície , Triazinas/química
13.
Genes Dev ; 25(7): 755-66, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21460039

RESUMO

Oocyte maturation, fertilization, and early embryonic development occur in the absence of gene transcription. Therefore, it is critical to understand at a global level the post-transcriptional events that are driving these transitions. Here we used a systems approach by combining polysome mRNA profiling and bioinformatics to identify RNA-binding motifs in mRNAs that either enter or exit the polysome pool during mouse oocyte maturation. Association of mRNA with the polysomes correlates with active translation. Using this strategy, we identified highly specific patterns of mRNA recruitment to the polysomes that are synchronized with the cell cycle. A large number of the mRNAs recovered with translating ribosomes contain motifs for the RNA-binding proteins DAZL (deleted in azoospermia-like) and CPEB (cytoplasmic polyadenylation element-binding protein). Although a Dazl role in early germ cell development is well established, no function has been described during oocyte-to-embryo transition. We demonstrate that CPEB1 regulates Dazl post-transcriptionally, and that DAZL is essential for meiotic maturation and embryonic cleavage. In the absence of DAZL synthesis, the meiotic spindle fails to form due to disorganization of meiotic microtubules. Therefore, Cpeb1 and Dazl function in a progressive, self-reinforcing pathway to promote oocyte maturation and early embryonic development.


Assuntos
Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Oócitos/citologia , Oócitos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Zigoto/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Embrião de Mamíferos , Camundongos , Polirribossomos/metabolismo , Proteínas de Ligação a RNA/genética , Zigoto/citologia
14.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1328-1334, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28476647

RESUMO

If no fertilization occurs for a prolonged time following ovulation, oocytes experience a time-dependent deterioration in quality both in vivo and in vitro due to processes called postovulatory aging. Because the postovulatory aging of oocytes has marked detrimental effects on embryo development and offspring, many efforts have been made to unveil the underlying mechanisms. Here we showed that translationally controlled tumor protein (TCTP) regulates spindle assembly during postovulatory aging and prevents deterioration in mouse oocyte quality. Spindle dynamics decreased with reduced TCTP level during aging of mouse oocytes. Knockdown of TCTP accelerated the reduction of spindle dynamics, accompanying with aging-related deterioration of oocyte quality. Conversely, overexpression of TCTP prevented aging-associated decline of spindle dynamics. Moreover, the aging-related abnormalities in oocytes were rescued after TCTP overexpression, thereby improving fertilization competency and subsequent embryo development. Therefore, our results demonstrate that TCTP-mediated spindle dynamics play a key role in maintaining oocyte quality during postovulatory aging and overexpression of TCTP is sufficient to prevent aging-associated abnormalities in mouse oocytes.


Assuntos
Biomarcadores Tumorais/metabolismo , Senescência Celular , Fase Luteal/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Animais , Biomarcadores Tumorais/genética , Blastocisto/metabolismo , Células Cultivadas , Feminino , Fase Luteal/genética , Masculino , Camundongos , Oócitos/citologia , Oogênese , Proteína Tumoral 1 Controlada por Tradução
15.
Biol Reprod ; 99(4): 798-805, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29733326

RESUMO

Maternal DNA damage during meiosis causes genetic abnormalities that can lead to infertility, birth defects, and abortion. While DNA damage can rapidly halt cell cycle progression and promote DNA repair in somatic cells, mammalian oocytes are unable to mount a robust G2/prophase arrest in response to DNA damage unless damage levels are severe. Here, we show that inhibition of WIP1 phosphatase enhances the ability of oocytes to respond to DNA damage. We found that WIP1 was expressed constantly during meiotic maturation, and that inhibition of WIP1 activity did not impair meiotic maturation. However, oocytes in G2/prophase were sensitized to DNA damage following WIP1 inhibition, not only increasing γ-H2AX level and ATM phosphorylation, but also decreasing entry into meiosis. Moreover, WIP1 inhibition significantly promoted the repair of damaged DNA during G2/prophase arrest, suggesting that WIP1 suppresses DNA repair in oocytes. Therefore, our results suggest that WIP1 is a key suppressor of the DNA damage response during G2/prophase arrest in mouse oocytes.


Assuntos
Dano ao DNA , Oócitos/citologia , Oócitos/metabolismo , Proteína Fosfatase 2C/metabolismo , Aminopiridinas/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA/efeitos dos fármacos , Dipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Histonas/metabolismo , Meiose/efeitos dos fármacos , Prófase Meiótica I , Camundongos , Oócitos/efeitos dos fármacos , Prófase , Proteína Fosfatase 2C/antagonistas & inibidores
16.
BMC Cancer ; 18(1): 716, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976159

RESUMO

BACKGROUND: Although MASTL (microtubule-associated serine/threonine kinase-like) is a key mitotic kinase that regulates mitotic progression through the inactivation of tumor suppressor protein phosphatase 2A (PP2A), the antitumor mechanism of MASTL targeting in cancer cells is still unclear. METHODS: MASTL expression was evaluated by using breast cancer tissue microarrays and public cancer databases. The effects of MASTL depletion with siRNAs were evaluated in various breast cancer cells or normal cells. Various methods, including cell viability, cell cycle, soft agar, immunoblotting, immunofluorescence, PP2A activity, live image, and sphere forming assay, were used in this study. RESULTS: This study showed the oncosuppressive mechanism of MASTL targeting that promotes mitotic catastrophe through PP2A activation selectively in breast cancer cells. MASTL expression was closely associated with tumor progression and poor prognosis in breast cancer. The depletion of MASTL reduced the oncogenic properties of breast cancer cells with high MASTL expression, but did not affect the viability of non-transformed normal cells with low MASTL expression. With regard to the underlying mechanism, we found that MASTL inhibition caused mitotic catastrophe through PP2A activation in breast cancer cells. Furthermore, MASTL depletion enhanced the radiosensitivity of breast cancer cells with increased PP2A activity. Notably, MASTL depletion dramatically reduced the formation of radioresistant breast cancer stem cells in response to irradiation. CONCLUSION: Our data suggested that MASTL inhibition promoted mitotic catastrophe through PP2A activation, which led to the inhibition of cancer cell growth and a reversal of radioresistance in breast cancer cells.


Assuntos
Neoplasias da Mama/radioterapia , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Mitose , Proteína Fosfatase 2/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tolerância a Radiação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos da radiação , Prognóstico , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Quinase 1 Polo-Like
17.
FASEB J ; 31(8): 3677-3688, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28487281

RESUMO

Dynamic changes in the actin network are crucial for the cortical migration of spindles and establishment of polarity, to ensure asymmetric division during meiotic maturation. In this study, filamin A (FLNA) was found to be an essential actin regulator that controlled spindle migration and asymmetric division during oocyte meiosis. FLNA was localized in the cytoplasm and enriched at the cortex and near the chromosomes. Knockdown of FLNA impaired meiotic asymmetric division and spindle migration with a decrease in the amount of cytoplasmic actin mesh and cortical actin levels. Moreover, FLNA knockdown reduced the phosphorylation of cofilin and Rho kinase (ROCK) near the spindle. Similar phenotypes, such as decreased filament actin levels, impaired spindle migration and polar body extrusion, were observed when active cofilin (S3A) was overexpressed or ROCK was inhibited. Notably, we found that FLNA and ROCK interacted directly in mouse oocytes. Taken together, our results show that FLNA plays crucial roles in asymmetric division during meiotic maturation by regulating ROCK-cofilin-mediated actin reorganization.-Wang, H., Guo J., Lin, Z., Namgoong, S., Oh, J. S., Kim, N.-H. Filamin A is required for spindle migration and asymmetric division in mouse oocytes.


Assuntos
Divisão Celular/fisiologia , Filaminas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Oócitos/fisiologia , Fuso Acromático/fisiologia , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Clonagem Molecular , Citoplasma/química , Feminino , Filaminas/genética , Técnicas de Silenciamento de Genes , Camundongos , Oócitos/citologia , Transporte Proteico , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
18.
Biochim Biophys Acta ; 1863(4): 630-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26802898

RESUMO

Dynamic changes in spindle structure and function are essential for maintaining genomic integrity during the cell cycle. Spindle dynamics are highly dependent on several microtubule-associated proteins that coordinate the dynamic behavior of microtubules, including microtubule assembly, stability and organization. Here, we show that translationally controlled tumor protein (TCTP) is a novel microtubule-associated protein that regulates spindle dynamics during meiotic maturation. TCTP was expressed and widely distributed in the cytoplasm with strong enrichment at the spindle microtubules during meiosis. TCTP was found to be phosphorylated during meiotic maturation, and was exclusively localized to the spindle poles. Knockdown of TCTP impaired spindle organization without affecting chromosome alignment. These spindle defects were mostly due to the destabilization of the polar microtubules. However, the stability of kinetochore microtubules attached to chromosomes was not affected by TCTP knockdown. Overexpression of a nonphosphorylable mutant of TCTP disturbed meiotic maturation, stabilizing the spindle microtubules. In addition, Plk1 was decreased by TCTP knockdown. Taken together, our results demonstrate that TCTP is a microtubule-associating protein required to regulate spindle microtubule dynamics during meiotic maturation in mouse oocytes.


Assuntos
Biomarcadores Tumorais/fisiologia , Meiose , Microtúbulos/metabolismo , Oócitos/citologia , Fuso Acromático/metabolismo , Polos do Fuso/metabolismo , Animais , Biomarcadores Tumorais/genética , Feminino , Técnicas de Silenciamento de Genes , Cinetocoros/metabolismo , Meiose/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Oócitos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Fuso Acromático/genética , Polos do Fuso/genética , Proteína Tumoral 1 Controlada por Tradução
19.
Biochim Biophys Acta ; 1863(12): 2993-3000, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693251

RESUMO

To ensure accurate chromosome segregation, the spindle assembly checkpoint (SAC) delays anaphase onset by preventing the premature activation of anaphase-promoting complex/cyclosome (APC/C) until all kinetochores are attached to the spindle. Although an escape from mitosis in the presence of unsatisfied SAC has been shown in several cancer cells, it has not been reported in oocyte meiosis. Here, we show that CDK7 activity is required to prevent a bypass of SAC during meiosis I in mouse oocytes. Inhibition of CDK7 using THZ1 accelerated the first meiosis, leading to chromosome misalignment, lag of chromosomes during chromosome segregation, and a high incidence of aneuploidy. Notably, this acceleration occurred in the presence of SAC proteins including Mad2 and Bub3 at the kinetochores. However, inhibition of APC/C-mediated cyclin B degradation blocked the THZ1-induced premature polar body extrusion. Moreover, chromosomal defects mediated by THZ1 were rescued when anaphase onset was delayed. Collectively, our results show that CDK7 activity is required to prevent premature anaphase onset by suppressing the bypass of SAC, thus ensuring chromosome alignment and proper segregation. These findings reveal new roles of CDK7 in the regulation of meiosis in mammalian oocytes.


Assuntos
Segregação de Cromossomos/efeitos dos fármacos , Ciclina B/genética , Quinases Ciclina-Dependentes/genética , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Aneuploidia , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Feminino , Regulação da Expressão Gênica , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Meiose/genética , Camundongos , Camundongos Endogâmicos ICR , Oócitos/citologia , Oócitos/metabolismo , Fenilenodiaminas/farmacologia , Corpos Polares/metabolismo , Corpos Polares/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose , Cultura Primária de Células , Proteólise/efeitos dos fármacos , Pirimidinas/farmacologia , Transdução de Sinais , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
20.
Biochem Biophys Res Commun ; 489(2): 193-199, 2017 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-28552528

RESUMO

Peroxiredoxins (Prxs) are highly conserved antioxidant enzymes and are implicated in multiple biological processes; however, their function in oocyte meiosis has not been studied. Here we show that inhibition of Prx I and II results in spindle defects, chromosome disorganization, and impaired polarization in mouse oocytes. Prx I was specifically localized at the spindle, whereas Prx II was enriched at the oocyte cortex and chromosomes. Inhibition of Prx activity with conoidin A disturbed assembly of the microtubule organizing center (MTOC) through Aurora A regulation, leading to defects in spindle formation. Moreover, conoidin A impaired actin filament and cortical granule (CG) distribution, disrupting actin cap and CG formation, respectively. Conoidin A also increased DNA damage without significantly increasing reactive oxygen species (ROS) levels, suggesting that the effects of conoidin A on meiotic maturation are not likely associated with ROS scavenging pathways. Therefore, our data suggest that Prxs are required for spindle assembly, chromosome organization, and polarization during meiotic maturation.


Assuntos
Polaridade Celular/efeitos dos fármacos , Cromossomos de Mamíferos/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Peroxirredoxinas/farmacologia , Fuso Acromático/efeitos dos fármacos , Animais , Células Cultivadas , Cromossomos de Mamíferos/metabolismo , Relação Dose-Resposta a Droga , Feminino , Meiose/efeitos dos fármacos , Camundongos , Oócitos/metabolismo , Peroxirredoxinas/genética , Quinoxalinas/farmacologia , Fuso Acromático/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA