Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 341: 117986, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172350

RESUMO

Increased urbanization and anthropogenic activities can alter dissolved organic matter (DOM) and complicate its interaction with bacteria in rivers' ecosystems, however, there is limited information about how bacterial communities respond to DOM components in rivers with different urbanization levels. Here, we combined spectroscopy-based DOM analysis and 16S rRNA gene amplicon sequencing to investigate the associations of bacterial taxa and DOM properties as well as the impacts of DOM on bacterial niche breadth in North River (NR) and West River (WR) of Jiulong River watershed, southern China, which had low and high urbanization levels, respectively. Spectroscopy analysis showed that hydrophilic DOM was predominant in both rivers whereas chromophoric DOM was higher in WR. Network analysis indicated that only seven bacterial genera (i.e., hg clade, chthoniobacter, Geobacter, Acidibacter, Alphal Cluster, Fluviicola, and Lacunisphaera) showed strong associations with DOM optical variables in both rivers, whereas more than 85% of DOM-bacterial genera associations were different between rivers. These results suggest that the relationship between DOM and bacterial communities had different responses in rivers with different urbanization levels. The partial least square path model indicated that the total standardized effect of physico-chemicals on bacterial niche breadth was higher in NR (0.62) than in WR (0.35), whereas humic substances showed an opposite pattern (NR: -0.42; WR: 1.67). The distinct effects of physico-chemicals and DOM on bacterial niche breadths between rivers could be due to the different effects of urbanization and human activities on the environmental conditions of riverine ecosystems. Our findings revealed a huge dissimilarity in the bacteria-DOM co-occurrence networks between rivers with different urbanization levels and provide a novel insight that urbanization may enhance DOM's importance to bacterial niche breadths.


Assuntos
Matéria Orgânica Dissolvida , Rios , Humanos , Rios/química , Ecossistema , Urbanização , RNA Ribossômico 16S/genética , Bactérias/genética , Espectrometria de Fluorescência
2.
J Environ Manage ; 325(Pt A): 116547, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419283

RESUMO

The mechanisms of phylogenetic turnover of microbial communities to environmental perturbations in sediments remain unclear. In this study, the molecular mechanisms of phylogenetic turnover, and impact of antibiotics and antibiotic resistance genes (ARGs) on the modification of microbial assemblages were unravelled. We investigated 306 ARGs, 8 transposases, and 4 integron integrases, bacteria, and eukaryotic diversity through high-throughput quantitative PCR and illumina sequencing, 21 antibiotics and 3 tetracycline byproducts. The freshwater and estuary ecosystems were mainly dominated by genus Sulfurovum and colonised by closely related species compared with the estuary (closeness centrality = 0.42 vs. 0.46), which was dominated by genus Mycobacterium. Eighty-six percent of the ecological process in the bacterial community was driven by stochastic processes, while the rest was driven by deterministic processes. Environmental-related concentrations of antibiotics (0.15-32.53 ng/g) stimulated the proliferation of ARGs which potentially modulated the microbial community assembly. ARG acquisition significantly (P < 0.001) increased eukaryotic diversity through protection mechanisms. ARGs showed complex interrelationships with the microbial communities, and phylum arthropods and Nematea demonstrated the strongest ARG acquisition potential. This study provides key insights for environmental policymakers into understanding the ecological impact of antibiotics and the role of ARGs in modulating the phylogenetic turnover of microbial communities and trophic transfer mechanisms.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Antibacterianos/análise , Genes Bacterianos , Filogenia , RNA Ribossômico 16S/genética , Farmacorresistência Bacteriana , Biodiversidade , Bactérias/genética
3.
J Environ Manage ; 336: 117646, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871447

RESUMO

The transport of excess nutrients into freshwater systems constitutes a serious risk to both water quality and aquatic health. Vegetated buffer zones (VBZs) next to waterways are increasingly used in many parts of the world to successfully intercept and eliminate pollutants and other materials in overland flow, especially in warm or temperate regions. The major processes for the retention of pollutants in VBZ are microbial degradation, infiltration, deposition, filtration, adsorption, degradation, assimilation, etc. The effectiveness of the VBZ relies on several environmental factors, including BZ width, runoff intensity, slope, soil texture, temperature, vegetation type, etc. Among the reported factors, cold weather possesses the most detrimental impact on many of the processes that VBZ are designed to carry out. The freezing temperatures result in ice formation, interrupting biological activity, infiltration and sorption, etc. In the last twenty years, burgeoning research has been carried out on the reduction of diffuse nutrient pollution losses from agricultural lands using VBZ. Nonetheless, a dearth of studies has dealt with the problems and concerns in cold climates, representing an important knowledge gap in this area. In addition, the effectiveness of VBZ in terms of nutrient removal abilities varies from -136% to 100%, a range that reveals the incertitude surrounding the role of VBZ in cold regions. Moreover, frozen soils and plants may release nutrients after undergoing several freeze-thaw cycles followed by runoff events in spring snowmelt. This review suggests that the management and design of VBZ in cold climates needs close examination, and these systems might not frequently serve as a good management approach to decrease nutrient movement.


Assuntos
Poluentes do Solo , Poluentes Químicos da Água , Clima Frio , Agricultura , Poluentes do Solo/análise , Fósforo , Poluentes Químicos da Água/análise , Solo , Nutrientes , Nitrogênio/análise
4.
J Environ Manage ; 321: 115986, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998537

RESUMO

In wetland ecosystem, the microbial succession in epiphytic biofilms of submerged macrophytes remains to be fully elucidated, especially submerged macrophytes used to remediate organic pollutants contaminated sediment. Herein, 16 S rRNA gene sequencing was used to investigate the bacterial dynamics and ecological processes in the biofilms of two typical submerged macrophytes (Vallisneria natans and Hydrilla verticillata) settled in sediment polluted by polycyclic aromatic hydrocarbons (PAHs) at two growth periods. The results presented that the variations of bacterial community in the biofilms were influenced by attached surfaces (explanation ratio: 17.30%), incubation time (32.30%) and environmental factors (39.10%). Bacterial community assembly was mainly driven by dispersal limitation which triggered more positive co-occurrence associations in microbial networks, maintaining ecological stability in the process of bioremediation of PAHs. Additionally, the functional redundancy strength of bacterial community was more affected by attached surface than incubation time. The structural equation model illustrated that community assembly drove ß-diversity and explained a part of ecological functions. Environmental factors, community assembly, and ß-diversity jointly affected microbial networks. Overall, our study offers new insights into the microbial ecology in biofilms attached on the submerged macrophytes settled in PAH-polluted sediment, providing important information for deeply understanding submerged macrophyte-biofilm complex and promoting sustainable phytoremediation in shallow lacustrine and marshy ecosystems.


Assuntos
Hydrocharitaceae , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Bactérias/genética , Biodegradação Ambiental , Biofilmes , Ecossistema , Pirenos , Áreas Alagadas
5.
J Environ Manage ; 255: 109583, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739203

RESUMO

Antibiotic resistance is a global health problem, and the role of antibiotics and metal pollution in antibiotic resistance in sediment biocenosis is limited. The occurrence and relationship between antibiotic resistance genes (ARGs), antibiotics, metals and environmental parameters were investigated in vertical layers of sediments in rural and urban lakes. Generally, the total concentrations of seven antibiotics were significantly higher in the rural lake (Lake Taihu = 96%) than in the urban lakes (Xuanwu = 0.3%, Wulongtan = 3%), while similar concentrations were observed for metals (Taihu (34%), Xuanwu (33%) and Wulongtan (33%)). The concentration of metals and antibiotics were mostly higher in the surface sediment layers than the deeper ones (for antibiotics; surface layers = 89%, deeper layer = 11%, for metals; surface = 65%, deep = 35%). The ARGs showed no significant difference between surface and deeper sediments (surface = 48%, deep = 52%, p < 0.05). The potential ecological risk index of Ni, Cu, Zn, Cr, Mn, As, Cd, and Pb contamination showed that Lake Taihu and Wulongtan had moderate ecological risks while Lake Xuanwu had a low ecological risk. Pearson coefficient and network analysis showed that direct and indirect relationship existed among antibiotics, metals, environmental parameters, and ARGs, and the relationship was linked by key environmental components. tetA, blaTEM, SDZ, TOC, OFL, Cd, OTC, NOR, Ni, sulA, AUR, TC, DOX and TN were the major factors that influence the distribution of resistance genes, forming a complex network mechanism of antibiotic resistance. Our study revealed that antibiotics and heavy metals are widely distributed in the surficial sediments and the proliferation of ARGs are influenced by some key environmental components.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Antibacterianos , China , Resistência Microbiana a Medicamentos , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Medição de Risco
6.
J Environ Manage ; 269: 110814, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561016

RESUMO

Among nitrogen species, nitrate is more stable than ammonium and nitrite, and it is an important nitrogenous pollutant in surface water. However, little is known about the characterization of epiphytic microbial communities on submersed macrophytes under nitrate loading. In this study, we investigated the co-occurring pattern and response of bacteria and microeukaryotes in epiphytic biofilms under nitrate loading. Nitrate loading significantly affected bacterial and eukaryotic communities, and turnover played greater contribution to the total dissimilarity than nestedness by partitioning beta-diversity analysis. Cyanobacteria, α-proteobacteria, ß-proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes, and γ-proteobacteria were dominant bacterial phyla/classes. Metazoan (phylum Arthropoda, Rotifera, Gastrotricha, Annelida, and Nematoda) and algae (phylum Bacillariophyta, Chlorophyta, and Streptophyta) were dominated in eukaryotic communities. The abundances of denitrifying bacteria (Rhodobacter, Acinetobacter, Bacillus, Flavobacterium, and Pseudomonas) and genes (nirS, cnorB, and nosZ) increased with nitrate loading. The network analysis showed there were complex interactions among photosynthetic microbes, metazoan, and bacteria (including denitrifiers) that they were potentially interrelated via photosynthesis, predation or feeding. This study provides new perspectives into understanding the factors affecting nitrate removal mechanisms in wetlands with submersed macrophytes.


Assuntos
Biodiversidade , Microbiota , Animais , Biofilmes , Desnitrificação , Nitratos , Áreas Alagadas
7.
J Environ Sci (China) ; 93: 193-201, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32446455

RESUMO

Submersed macrophytes decay is an important natural process and has important role in mass and energy flow in aquatic ecosystems. However, little is known about the dynamical changes in nutrients release and bacterial community during submersed macrophyte decay in natural environment. In this study, a field observation was conducted in a wetland dominated with Hydrilla verticillata for 36 days. Increase of H2O2 and malondialdehyde (MDA) content and decrease of soluble proteins concentration were detected in leaves during H. verticillata decay. Meanwhile, ammonium-N, soluble microbial products (SMP) and TOC concentration increased in overlying water. According to bacterial 16S rRNA Illumina sequencing analysis, the Shannon values were lower in epiphytic biofilms than deciduous layer sediments. The relative abundances of Proteobacteria, Cyanobacteria and Actinobacteria were higher in epiphytic biofilms than in deciduous layer sediments (P < 0.05). Co-occurrence network analyses showed that a total of 578 and 845 pairs of correlations (|r| > 0.6) were identified from 122 and 112 genera in epiphytic biofilms and deciduous layer sediments, respectively. According to co-occurrence patterns, eight hubs were mainly from phyla Proteobacteria, Acidobacteria and Parcubacteria in epiphytic biofilms; while 37 hubs from the 14 phyla (Proteobacteria, Bacteroidetes, Acidobacteria, Chloroflexi, et al.) were detected in deciduous layer sediments. Our results indicate that bacterial community in deciduous layer sediments was more susceptible than in epiphytic biofilms during decay process. These data highlight the role of microbial community in deciduous layer sediments on nutrients removal during H. verticillata decay and will provide useful information for wetland management.


Assuntos
Hydrocharitaceae , Bactérias/genética , Biofilmes , Sedimentos Geológicos , Peróxido de Hidrogênio , RNA Ribossômico 16S
8.
Mar Environ Res ; 198: 106522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685152

RESUMO

Bacteria in phycosphere engage in intricate interactions with microalgae by exchanging organic and inorganic matter. However, elucidating the primary roles of bacteria in phycosphere has been a big challenge, due to the lack of adequate methods for separating tightly associated bacteria from microalgal cells. In this study we evaluated several isolation methods including centrifugation, filtration, sonication combined with filtration, and tween lysis followed by sonication and filtration, aiming to efficiently acquire complete bacterial communities from phycosphere. The results demonstrated that the sonication-filtration approach maximally preserves the original characteristics of the bacterial communities. This method will facilitate the acquisition and further analysis of future experimental data.


Assuntos
Bactérias , Filtração , Sonicação , Bactérias/isolamento & purificação , Filtração/métodos , Microalgas/fisiologia
9.
Sci Total Environ ; 915: 170122, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38232840

RESUMO

Antibiotic pollution and the evolution of antibiotic resistance genes (ARGs) are increasingly viewed as major threats to both ecosystem security and human health, and have drawn attention. This study investigated the fate of antibiotics in aqueous and sedimentary substrates and the impact of ecosystem shifts between water and sedimentary phases on resistome profiles. The findings indicated notable variations in the concentration and distribution patterns of antibiotics across various environmental phases. Based on the partition coefficient (Kd), the total antibiotic concentration was significantly greater in the surface water (1405.45 ng/L; 49.5 %) compared to the suspended particulate matter (Kd = 0.64; 892.59 ng/g; 31.4 %) and sediment (Kd = 0.4; 542.64 ng/g; 19.1 %). However, the relative abundance of ARGs in surface water and sediment was disproportionate to the abundance of antibiotics concentration, and sediments were the predominant ARGs reservoirs. Phylogenetic divergence of the microbial communities between the surface water and the sedimentary ecosystems potentially played important roles in driving the ARGs profiles between the two distinctive ecosystems. ARGs of Clinical importance; including blaGES, MCR-7.1, ermB, tet(34), tet36, tetG-01, and sul2 were significantly increased in the surface water, while blaCTX-M-01, blaTEM, blaOXA10-01, blaVIM, tet(W/N/W), tetM02, and ermX were amplified in the sediments. cfxA was an endemic ARG in surface-water ecosystems while the endemic ARGs of the sedimentary ecosystems included aacC4, aadA9-02, blaCTX-M-04, blaIMP-01, blaIMP-02, bla-L1, penA, erm(36), ermC, ermT-01, msrA-01, pikR2, vgb-01, mexA, oprD, ttgB, and aac. These findings offer a valuable information for the identification of ARGs-specific high-risk reservoirs.


Assuntos
Genes Bacterianos , Água , Humanos , Ecossistema , Filogenia , Rios , Antibacterianos/análise
10.
Environ Sci Pollut Res Int ; 30(25): 66431-66444, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37101213

RESUMO

Antibiotic residues in aquatic environments pose a potential hazard, and microbes, which play important roles in aquatic ecosystems, are vulnerable to the impacts of antibiotics. This study aimed to analyze the research progress, trends, and hot topics of the impact of antibiotics on microbial community and biodegradation mechanism using bibliometric analysis. An in-depth analysis of the publication characteristics of 6143 articles published between 1990 and 2021 revealed that the number of articles published increased exponentially. The research sites have been mainly concentrated in the Yamuna River, Pearl River, Lake Taihu, Lake Michigan, Danjiangkou Reservoir, etc., illustrating that research around the world is not even. Antibiotics could change the diversity, structure, and ecological functions of bacterial communities, stimulate a widespread abundance of antibiotic-resistant bacteria and antibiotic-resistant genes, and increase the diversity of eukaryotes, thus triggering the shift of food web structure to predatory and pathogenic. Latent Dirichlet allocation theme model analysis showed three clusters, and the research hotspots mainly included the effect of antibiotics on the denitrification process, microplastics combined with antibiotics, and methods for removing antibiotics. Furthermore, the mechanisms of microbe-mediated antibiotic degradation were unraveled, and importantly, we provided bottlenecks and future research perspectives on antibiotics and microbial diversity research.


Assuntos
Microbiota , Plásticos , Antibacterianos/farmacologia , Bactérias/genética , Bibliometria
11.
Environ Int ; 178: 108118, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37517178

RESUMO

The influence of vertical changes in water depth on emerging pollutants distribution and microbial food web remains elusive. We investigated the influence of vertical transition in water depth on the environmental variables, antibiotics and antibiotic resistomes, and microbial community structures in estuary and marine ecosystems (0-50 m). Stepwise multiple linear regression model showed that among investigated environmental variables, change in water salinity was the most influential factor dictating the fluoroquinolone and macrolides concentrations, while dissolved oxygen and turbidity were the key influencers of sulfonamides and beta-lactam concentrations, respectively. Bacterial and eukaryotic diversity and niche breadth significantly increased with the increasing water depth. Ecosystem food web structure at the bottom depths was more stable than at the middle and surface depths. At the surface depth, the top 5 keystone genera were Cryothecomonas, Syndiniales, Achromobacter, Pseudopirsonia, and Karlodinium. Whereas Eugregarinorida, Neptuniibacter, Mychonastes, Novel_Apicomplexa_Class_1, Aplanochytrium and Dietzia, Halodaphnea, Luminiphilus, Aplanochytrium, Maullinia dominated the top 5 genera at the middle and the bottom depth, respectively. Absolute abundance of antibiotic resistance genes (ARGs) was drastically increased at the surface depth compared with the middle and bottom depths. Abundance of the top 10 ARGs and mobile genetic elements (MGEs) detected including tnpA-05, aadA2-03, mexF, aadA1, intI-1(clinic), qacEdelta1-02, aadA-02, qacEdelta1-01, cmlA1-01, and aadA-01 were amplified at the surface depth. This study demonstrated that ARGs abundance was disproportionate to bacterial diversity, and anthropogenic disturbances, confinement, MGEs, and ecosystem stability play primary roles in the fate of ARGs. The findings of this study also implicate that vertical changes in the water depth on environmental conditions can influence antibiotic concentrations and microbial community dramatically.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Antibacterianos/análise , Água , Cadeia Alimentar , Genes Bacterianos , Estuários , Bactérias/genética
12.
Environ Sci Pollut Res Int ; 29(32): 47915-47930, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35522418

RESUMO

Freshwater periphytic biofilms (FPBs), existing widely in various aquatic environments, have attracted extensive attention for many years. In the present study, a bibliometric analysis based on Web of Science Core Collection (WoSCC) was used to understand the research progress, trends, and hot topics of FPBs qualitatively and quantitatively. The results indicated that publications on FPBs have increased from 1991 to 2020 rapidly, and researchers have focused more on the areas of environmental sciences, microbiology, and marine freshwater biology. The most influential countries were mainly the USA, Spain, France, and Germany. Cooperation network analysis reflected that the USA and its affiliated institutions played crucial roles in the research of FPB cooperation, but the collaboration between core author groups still fell short. Based on the analysis of top 20 high-cited FPB documents over the last 30 years, research hotspots mainly included micro-observation and assembly mechanisms of FPBs; interactions of FPBs and pollutants including heavy metals, antibiotic resistance genes, pathogens, organic pollutants, and nanoparticles; and the role of FPBs for biogeochemical cycling, especially nitrogen cycling. Additionally, future research directions were proposed. Overall, this study provides a comprehensive and systematic overview of FPBs, which is useful for research development and researchers who are interested in this area.


Assuntos
Poluentes Ambientais , Metais Pesados , Bibliometria , Biofilmes , Água Doce
13.
J Hazard Mater ; 424(Pt B): 127495, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34673400

RESUMO

Constructed wetlands (CWs) are nature-based solutions for treating domestic and livestock wastewater which may contain residual antibiotics concentration. Antibiotics may exert selection pressure on wetland's microbes, thereby increasing the global antibiotics resistance problems. This review critically examined the chemodynamics of antibiotics and antibiotics resistance genes (ARGs) in CWs. Antibiotics affected the biogeochemical cycling function of microbial communities in CWs and directly disrupted the removal efficiency of total nitrogen, total phosphorus, and chemical oxygen demand by 22%, 9.3%, and 24%, respectively. Since changes in microbial function and structure are linked to the emergence and propagation of antibiotic resistance, antibiotics could adversely affect microbial diversity in CWs. The cyanobacteria community seemed to be particularly vulnerable, while Proteobacteria could resist and persist in antibiotics contaminated wetlands. Antibiotics triggered excitation responses in plants and increased the root activities and exudates. Microbes, plants, and substrates play crucial roles in antibiotic removal. High removal efficiency was exhibited for triclosan (100%) > enrofloxacin (99.8%) > metronidazole (99%) > tetracycline (98.8%) > chlortetracycline (98.4%) > levofloxacin (96.69%) > sulfamethoxazole (91.9%) by the CWs. This review showed that CWs exhibited high antibiotics removal capacity, but the absolute abundance of ARGs increased, suggesting CWs are potential hotspots for ARGs. Future research should focus on specific bacterial response and impact on microbial interactions.


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Antibacterianos/farmacologia , Biodegradação Ambiental , Resistência Microbiana a Medicamentos/genética , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
14.
Chemosphere ; 305: 135428, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35760129

RESUMO

The ecological impacts of antibiotics and antibiotic resistance genes (ARGs) on water ecology remain elusive in natural environments. We investigated the influence of antibiotics, ARGs and salinity gradient on the surface water ecosystem. Cefquinome (104.2 ± 43.6 ng/L) and cefminox (16.2 ± 7.50 ng/L) cephalosporins were predominant in all sites. Antibiotic contamination was increased in the estuary ecosystems compared to the freshwater ecosystems by 6%. Bacterial diversity could resist changes in salinity, but the relative abundance of some bacterial genera; Pseudoalteromonas, Glaciecola, norank_f__Arcobacteraceae, and Pseudohongiella was increased in the estuary zone (salinity>0.2%). The eukaryotic composition was increased in the subsaline environments (<0.2%), but the higher salinity in the saline zone inhibited the eukaryotic diversity. The relative abundance of ARGs was significantly higher in the estuary than in freshwater ecosystems, and ARGs interactions and mobile elements (aac(6')-Ib(aka_aacA4)-01, tetR-02, aacC, intI1, intI-1(clinic), qacEdelta1-01, and strB) were the predominant factors responsible for the ARGs propagation. Antibiotics associated with corresponding and non-corresponding ARGs and potentially created an adverse environment that increased the predation and pathogenicity of the aquatic food web and inhibited the metabolic functions. Surface water are first-line-ecosystems receiving antibiotics and ARGs hence our findings provided vital insights into understanding their ecological consequences on surface water ecosystems.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/análise , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos , Salinidade , Água
15.
Sci Total Environ ; 851(Pt 2): 158369, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049676

RESUMO

The changes in the aquatic environmental conditions often influence the microbial community assemblages and genome repertoire. Studies investigating the aquatic diversity and ecosystem services were primarily conducted in horizontal environments while neglecting the microbial phylogenetic divergences, biotrophic interactions, and eco-sustainability at water vertical layers. We investigated the mechanisms of microbial transitions, and the ecological significance of water depth layers in the estuary and marine ecosystems. The results demonstrated that the salinity and turbidity increased with increasing water depth (0-50 m), while temperature and pH decreased significantly. The bacterial and eukaryotic diversity and composition significantly increased with an elevating water depth. Bacterial phyla such as Desulfobacterota, Acidobacteriota, Myxococcota, Gemmatimonadota, Campilobacterota, and Latescibacterota were increased significantly. However, niche preference occurred, and some microbes showed differential nestedness at water vertical layers. In the eukaryotic community, Eustigmatales group were the only clades predominantly phylogenetically nested at the surface water depth. c_Conoidasida, o_Gregarinasina, f_Eugregarinorida, and g_Lankesteria were the most predominant at the middle depth. While Mediophyceae clades, p_SAR, and the Animalia clades were the most predominant groups nested at the bottom depths. The microbial interaction, structure, and stability were increased with increasing depth. The vertical phylogenetic turnover of the microbial community was related to the feeding mechanisms. Phototrophic organisms were particularly adapted at the surface, and middle depth by parasitic and pathogenic organisms, while the bottom was inhabited by diatoms, decomposers, and detritus protists. This study demonstrated that the bottom depth was the most ecologically stable area with more profound ecosystem services.


Assuntos
Diatomáceas , Microbiota , Ecossistema , Estuários , Filogenia , Bactérias , Eucariotos , Água , Biodiversidade
16.
Sci Total Environ ; 828: 154569, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302030

RESUMO

The increased use of neonicotinoid insecticides in aquatic environments poses a significant threat to non-target freshwater species. However, the existing water quality guidelines (WQGs) for neonicotinoids mainly focus on imidacloprid, and only a few authoritative institutions have established WQGs for other neonicotinoids. There is a critical need to develop WQGs and conduct ecological risk assessment (ERA) of different neonicotinoids in global freshwater environments. In this study, we derived interim acute and chronic guideline values and acute-to-chronic ratios (ACRs) for six neonicotinoids based on publicly available acute and chronic toxicity data. The exposure concentrations of neonicotinoids were obtained from published literature worldwide, and ERA was conducted for neonicotinoids in global freshwater ecosystems using a tiered approach. The derived chronic guideline values (95% confidence interval (CI), ng/L) were 0.63 (0.02-5.47) for thiacloprid (the lowest) and 16.4 for dinotefuran (the highest). The identified ACRs (95% CI) ranged from 90.9 (47.0-180) to 957 (102-3350), which can be used to extrapolate scarce chronic data from the acute data. Neonicotinoid concentrations in global freshwater were predicted from 10.6 (6.88-23.4) (thiacloprid) to 339 (211-786) ng/L (thiamethoxam). The estimated risk quotients ranged from 3.23 (dinotefuran) to 21.73 (thiacloprid), and the probability of exceeding WQGs ranged from 27.1% (dinotefuran) to 77.1% (thiacloprid). The ERA results indicated that the six neonicotinoids posed negligible acute risks but high chronic risks to global freshwater ecosystems, especially acetamiprid (65.8%) and thiacloprid (28.1%). The key findings of this study provide critical scientific information regarding the ecological risks of long-term neonicotinoid exposure and key insights for policy development and water quality control.


Assuntos
Inseticidas , Poluentes Químicos da Água , Ecossistema , Água Doce , Inseticidas/análise , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água
17.
J Hazard Mater ; 417: 126148, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34229400

RESUMO

The fate of antibiotics and their impact on antibiotic resistance genes (ARGs) and microbial communities are far from clear in wetlands. The fate and impact of tetracycline (TC) on the nutrient degradation of wetlands and epiphytic microbes were investigated. This study showed that after TC spiking, 99.7% of TC were removed from the surface water of wetlands containing Vallisneria spiralis within 4 days post-treatment. TC spiking impaired the nutrient removal capacity and disrupted epiphytic microbial community structure while enhancing the abundance of 11 ARGs subtypes, including tetracycline resistance genes, tetX, tetM, tetO, tetQ, tetS, and tet36. TC decreased bacterial biodiversity but amplified the relative abundance of Proteobacteria and Firmicutes by 4% and 61%, respectively, and increased eukaryotic diversity. 16 metabolic pathways including Carbohydrate, Energy, Amino acid, 'cofactor and vitamins' metabolisms were significantly (p < 0.01) increased in TC treatment. Phylogenetic, functional prediction analysis indicated that Flavobacterium was positively related with xenobiotics, cell motility, 'terpenoids and polyketides' metabolism but negatively related to nucleotide metabolism, while Rhodobacter showed a reverse trend but positively related with nucleotide and 'glycan biosynthesis' and metabolism. These data highlighted that TC has negative impacts on epiphytic microbial community and nutrients removal in wetlands.


Assuntos
Qualidade da Água , Áreas Alagadas , Antibacterianos , Genes Bacterianos , Filogenia , Tetraciclina
18.
Bioresour Technol ; 323: 124574, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33412499

RESUMO

This study investigated the fate of ciprofloxacin (CIP) in wetlands dominated by Vallisneria spiralis. About 99% of CIP was degraded from overlaying water within 4 days of treatment but significantly inhibited the nutrient removal capacity (TN, TP, and COD) by causing a drastic reduction in microbial aggregation in epiphytic biofilm and bacterial biodiversity. CIP triggered resistance mechanisms among dominant bacteria phyla such as Proteobacteria, Actinobacteria, and Planctomycetes causing their increased relative abundance. Additionally, the relative abundances of eukaryotic microorganisms (including; Chloroplastida, Metazoa, and Rhizaria) and 13 ARGs subtypes (including; Efflux pump, Tetracycline, Multi-drug, Rifampin, Beta-lactam, Peptide, Trimethoprim) were significantly increased. While dominant metabolic pathways such as Carbohydrate, amino acid, energy and nucleotide metabolism were inhibited. This study revealed that V. spiralis has great sorption capacity for CIP than sediment and though CIP was effectively removed from the overlying water, it caused a prolonged effect on the epiphytic biofilm microbial communities.


Assuntos
Ciprofloxacina , Microbiota , Antibacterianos/farmacologia , Biofilmes , Ciprofloxacina/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Áreas Alagadas
19.
Bioresour Technol ; 326: 124727, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33548819

RESUMO

This study explored biofloc technology for shrimp culture based on straw substrates with a size of 40 mu, 80 mu, and 120 mu. Straw substrates utilization stimulated shrimp growth compared to control. Treatment with 40 mu had the best ammonium (71.60%) and nitrite nitrogen (77.78%) removal rates generally. In all biofloc treatments, Proteobacteria (4.10-56.1%) was the most dominant phylum, followed by Bacteroidetes (2.44-38.21%), Planctomycetes (0.45-21.41%), and Verrucomicrobia (1.2-10.30%). Redundancy analysis showed that salinity was a significant factor closely related to the microbial community in biofloc. The environmental parameters (DO > pH > TN > NH4+-N > COD > Salinity > EC), nitrification, and denitrification genes (amoA > napA > nirK) were significant factors that interrelated with the bacterial genus in the network analysis. This study highlighted a novel technology of reusing agricultural waste that transformed inorganic nitrogen using nutrient recycling to control water quality in the culture system and produced microbial proteins that served as a natural nutritional supplement to enhance shrimp growth.


Assuntos
Aquicultura , Lagoas , Desnitrificação , Nitrificação , Nitrogênio , Nutrientes
20.
Environ Pollut ; 290: 117995, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34419860

RESUMO

Fish Embryo Acute Toxicity (FET) test was proposed as an alternative to the traditional test methods using larval or adult fish. However, whether fathead minnow (Pimephales promelas) embryo is appropriate for FET remains uncertain. In the present study, ecological threshold of toxicological concern (ecoTTC) values and uncertainty factors (UFs) for each Verhaar et al. category in P. promelas were identified by employing probabilistic ecological risk assessment (PERA) approach with chemical toxicity distributions (CTDs). The sensitivity among different life stages and toxicity among different mode of actions (MOAs) classes were comprehensively compared by CTD comparisons. The results showed that embryo exhibited the less or similar sensitivity compared to larva or adult for Verhaar et al. MOA classes (1-4) while adults were more sensitive, followed by embryo than larval for non-classified chemicals. Considering growth effect as endpoint to class 1, class 3, and non-classified chemicals on P. promelas embryo and larva was more sensitive than mortality. Non-classified chemicals especially inorganic compounds were most toxic to P. promelas embryo for the four concerned Verharr et al. MOA-specific chemical classes. This study also derived uncertainty factors (UFs) as 26.5 (9.8, 109) for embryo-to-larva, 6.26 (3.94, 11.0) for embryo-to-adult, 15.6 (10.1, 36.1) for mortality-to-growth, and 3.03 (1.86, 7.08) for mortality-to-reproduction, which can be applied for extrapolations of life stage-to-life stage and effect-to-effect to reduce the underestimating and overestimating risk by the use of default UF such as 10, 100 or 1000. Our findings are vital for feasibility of FET test of P. promelas for ecotoxicity testing and ecological risk assessment for chemicals with different MOAs.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Embrião não Mamífero , Larva , Reprodução , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA