Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105632, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199573

RESUMO

We previously reported that bakuchiol, a phenolic isoprenoid anticancer compound, and its analogs exert anti-influenza activity. However, the proteins targeted by bakuchiol remain unclear. Here, we investigated the chemical structures responsible for the anti-influenza activity of bakuchiol and found that all functional groups and C6 chirality of bakuchiol were required for its anti-influenza activity. Based on these results, we synthesized a molecular probe containing a biotin tag bound to the C1 position of bakuchiol. With this probe, we performed a pulldown assay for Madin-Darby canine kidney cell lysates and purified the specific bakuchiol-binding proteins with SDS-PAGE. Using nanoLC-MS/MS analysis, we identified prohibitin (PHB) 2, voltage-dependent anion channel (VDAC) 1, and VDAC2 as binding proteins of bakuchiol. We confirmed the binding of bakuchiol to PHB1, PHB2, and VDAC2 in vitro using Western blot analysis. Immunofluorescence analysis showed that bakuchiol was bound to PHBs and VDAC2 in cells and colocalized in the mitochondria. The knockdown of PHBs or VDAC2 by transfection with specific siRNAs, along with bakuchiol cotreatment, led to significantly reduced influenza nucleoprotein expression levels and viral titers in the conditioned medium of virus-infected Madin-Darby canine kidney cells, compared to the levels observed with transfection or treatment alone. These findings indicate that reducing PHBs or VDAC2 protein, combined with bakuchiol treatment, additively suppressed the growth of influenza virus. Our findings indicate that bakuchiol exerts anti-influenza activity via a novel mechanism involving these mitochondrial proteins, providing new insight for developing anti-influenza agents.


Assuntos
Antivirais , Influenza Humana , Fenóis , Animais , Cães , Humanos , Antivirais/farmacologia , Antivirais/química , Proteínas Mitocondriais/metabolismo , Proibitinas , Espectrometria de Massas em Tandem , Canal de Ânion 1 Dependente de Voltagem , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem , Linhagem Celular
2.
EMBO Rep ; 24(10): e57108, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37535603

RESUMO

The H3K4 methyltransferase SETD1A plays a crucial role in leukemia cell survival through its noncatalytic FLOS domain-mediated recruitment of cyclin K and regulation of DNA damage response genes. In this study, we identify a functional nuclear localization signal in and interaction partners of the FLOS domain. Our screen for FLOS domain-binding partners reveals that the SETD1A FLOS domain binds mitosis-associated proteins BuGZ/BUB3. Inhibition of both cyclin K and BuGZ/BUB3-binding motifs in SETD1A shows synergistic antileukemic effects. BuGZ/BUB3 localize to SETD1A-bound promoter-TSS regions and SETD1A-negative H3K4me1-positive enhancer regions adjacent to SETD1A target genes. The GLEBS motif and intrinsically disordered region of BuGZ are required for both SETD1A-binding and leukemia cell proliferation. Cell-cycle-specific SETD1A restoration assays indicate that SETD1A expression at the G1/S phase of the cell cycle promotes both the expression of DNA damage response genes and cell cycle progression in leukemia cells.


Assuntos
Leucemia , Mitose , Humanos , Mitose/genética , Ciclinas/genética , Ciclinas/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Leucemia/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética
3.
J Proteome Res ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38978496

RESUMO

Data-independent acquisition (DIA) techniques such as sequential window acquisition of all theoretical mass spectra (SWATH) acquisition have emerged as the preferred strategies for proteomic analyses. Our study optimized the SWATH-DIA method using a narrow isolation window placement approach, improving its proteomic performance. We optimized the acquisition parameter combinations of narrow isolation windows with different widths (1.9 and 2.9 Da) on a ZenoTOF 7600 (Sciex); the acquired data were analyzed using DIA-NN (version 1.8.1). Narrow SWATH (nSWATH) identified 5916 and 7719 protein groups on the digested peptides, corresponding to 400 ng of protein from mouse liver and HEK293T cells, respectively, improving identification by 7.52 and 4.99%, respectively, compared to conventional SWATH. The median coefficient of variation of the quantified values was less than 6%. We further analyzed 200 ng of benchmark samples comprising peptides from known ratios ofEscherichia coli, yeast, and human peptides using nSWATH. Consequently, it achieved accuracy and precision comparable to those of conventional SWATH, identifying an average of 95,456 precursors and 9342 protein groups across three benchmark samples, representing 12.6 and 9.63% improved identification compared to conventional SWATH. The nSWATH method improved identification at various loading amounts of benchmark samples, identifying 40.7% more protein groups at 25 ng. These results demonstrate the improved performance of nSWATH, contributing to the acquisition of deeper proteomic data from complex biological samples.

4.
Proc Natl Acad Sci U S A ; 117(18): 9896-9905, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321834

RESUMO

The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix-cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with the mechanical microenvironment in large blood vessels to maintain the integrity of the vessel wall are not fully understood. Here, we identified the matricellular protein thrombospondin-1 (Thbs1) as an extracellular mediator of matrix mechanotransduction that acts via integrin αvß1 to establish focal adhesions and promotes nuclear shuttling of Yes-associated protein (YAP) in response to high strain of cyclic stretch. Thbs1-mediated YAP activation depends on the small GTPase Rap2 and Hippo pathway and is not influenced by alteration of actin fibers. Deletion of Thbs1 in mice inhibited Thbs1/integrin ß1/YAP signaling, leading to maladaptive remodeling of the aorta in response to pressure overload and inhibition of neointima formation upon carotid artery ligation, exerting context-dependent effects on the vessel wall. We thus propose a mechanism of matrix mechanotransduction centered on Thbs1, connecting mechanical stimuli to YAP signaling during vascular remodeling in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Integrina beta1/genética , Trombospondina 1/genética , Fatores de Transcrição/genética , Remodelação Vascular/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aorta/crescimento & desenvolvimento , Aorta/metabolismo , Artérias Carótidas/crescimento & desenvolvimento , Artérias Carótidas/metabolismo , Microambiente Celular/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Adesões Focais/genética , Via de Sinalização Hippo , Humanos , Integrina beta1/metabolismo , Mecanotransdução Celular , Camundongos , Neointima/genética , Neointima/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Trombospondina 1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Proteínas rap de Ligação ao GTP/genética
5.
Pharmacogenet Genomics ; 32(8): 288-292, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997049

RESUMO

P-glycoprotein, the encoded product of the MDR1 / ABCB1 gene in humans, is expressed in numerous tissues including brain capillary endothelial cells and restricts the distribution of xenobiotics into the brain as an efflux pump. Although a large number of single nucleotide polymorphisms in the MDR1 gene have been identified, the influence of the nonsynonymous 2677G>T/A single nucleotide polymorphism on P-glycoprotein at the blood-brain barrier has remained unclear. In the present study, we developed a novel P-glycoprotein humanized mouse line carrying the 2677G>T mutation by utilizing a mouse artificial chromosome vector constructed by genetic engineering technology and we evaluated the influence of 2677G>T on the expression and function of P-glycoprotein at the blood-brain barrier in vivo . The results of this study showed that the introduction of the 2677G>T mutation does not alter the expression levels of P-glycoprotein protein in the brain capillary fraction. On the other hand, the brain penetration of verapamil, a representative substrate of P-glycoprotein, was increased by the introduction of the 2677G>T mutation. These results suggested that the 2677G>T single nucleotide polymorphism may attenuate the function of P-glycoprotein, resulting in increased brain penetration of P-glycoprotein substrates, without altering the expression levels of P-glycoprotein protein in the blood-brain barrier. This mutant mouse line is a useful model for elucidating the influence of an MDR1 gene single nucleotide polymorphism on the expression and function of P-glycoprotein at the blood-brain barrier.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Humanos , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
6.
Anal Chem ; 94(29): 10329-10336, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35817413

RESUMO

Recent advances in single-cell proteomics highlight the promise of sensitive analyses in limited cell populations. However, technical challenges remain for sample recovery, throughput, and versatility. Here, we first report a water droplet-in-oil digestion (WinO) method based on carboxyl-coated beads and phase transfer surfactants for proteomic analysis using limited sample amounts. This method was developed to minimize the contact area between the sample solution and the container to reduce the loss of proteins and peptides by adsorption. This method increased protein and peptide recovery 10-fold. The proteome profiles obtained from 100 cells using the WinO method highly correlated with those from 10,000 cells using the in-solution digestion method. We successfully applied the WinO method to single-cell proteomics and quantified 462 proteins. Using the WinO method, samples can be easily prepared in a multi-well plate, making it a widely applicable and suitable method for single-cell proteomics.


Assuntos
Proteoma , Proteômica , Digestão , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Água
7.
Mol Pharm ; 19(8): 2754-2764, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35766901

RESUMO

Blood-brain barrier (BBB)-permeable middle- or macromolecules (middle/macromolecules) have recently attracted significant attention as new drug delivery carriers into the human brain via receptor-mediated transcytosis (RMT). During the development process of such carriers, it is necessary to thoroughly evaluate their human BBB permeability levels. In such evaluations, our recently established human immortalized cell-based multicellular spheroidal BBB models (hiMCS-BBB models) have shown high potential. However, the specifics of those capabilities have yet to be elucidated. Therefore, in this study, we characterize the ability of the hiMCS-BBB models to evaluate RMT-mediated BBB penetration properties of middle/macromolecules. More specifically, we began by validating transferrin receptor (TfR)-mediated RMT functionalities using transferrin in the hiMCS-BBB models and then examined the BBB permeability levels of MEM189 antibodies (known BBB-permeable anti-TfR antibodies). The obtained results showed that, as with the case of transferrin, temperature-dependent uptake of MEM189 antibodies was observed in the hiMCS-BBB models, and the extent of that uptake increased in a time-dependent manner until reaching a plateau after around 2 h. To further expand the evaluation applicability of the models, we also examined the BBB permeability levels of the recently developed SLS cyclic peptide and observed that peptide uptake was also temperature-dependent. To summarize, our results show that the hiMCS-BBB models possess the ability to evaluate the RMT-mediated BBB-permeable properties of antibodies and peptides and thus have the potential to provide valuable tools for use in the exploration and identification of middle/macromolecules showing excellent BBB permeability levels, thereby contributing powerfully to the development of new drug delivery carriers for transporting drugs into the human brain.


Assuntos
Barreira Hematoencefálica , Receptores da Transferrina , Anticorpos/química , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Receptores da Transferrina/metabolismo , Transcitose , Transferrina/metabolismo
8.
Pharm Res ; 39(7): 1561-1574, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34811625

RESUMO

PURPOSE: The insulin receptor (INSR) mediates insulin signaling to modulate cellular functions. Although INSR is expressed at the blood-brain barrier (BBB), its role in the modulation of BBB function is poorly understood. Therefore, in this study, we aimed to analyze the effect of INSR knockdown on the expression levels of functional proteins at the BBB. METHODS: We established the INSR-knockdown cell line (shINSR) using human cerebral microvascular endothelial cells (hCMEC/D3). The cellular proteome was analyzed using quantitative proteomics. RESULTS: INSR mRNA and protein expressions were decreased in shINSR cells. The suppression of INSR-mediated signaling in shINSR cells was evaluated. The proteins involved in glycolysis and glycogenolysis were suppressed in shINSR cells. As amyloid-ß peptide-related proteins, the expressions of presenilin-1 was increased, and those of the insulin-degrading enzyme and neprilysin were decreased. The expressions of BBB transporters, including the ABCB1/MDR1, ABCG2/BCRP, and SLCO2A1/OATP2A1 were significantly decreased by more than 50% in shINSR cells. The efflux activity of ABCB1/MDR1 was also suppressed. The expressions of the low-density lipoprotein receptor-related protein 1 were significantly increased, and those of the transferrin receptor were significantly decreased in shINSR cells. The expression of claudin-5 was also suppressed in shINSR cells. CONCLUSIONS: The present study suggests that INSR-mediated signaling is involved in the regulation of functional protein expression at the BBB and contributes to the maintenance of BBB function. Changes in the expressions of amyloid-ß peptide-related proteins may contribute to the development of cerebral amyloid angiopathy via the suppression of INSR-mediated signaling.


Assuntos
Antígenos CD , Barreira Hematoencefálica , Transportadores de Ânions Orgânicos , Receptor de Insulina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Peptídeos beta-Amiloides/metabolismo , Antígenos CD/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Receptor de Insulina/genética
9.
Pharm Res ; 39(11): 2965-2978, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36131112

RESUMO

PURPOSE: Quantitative targeted absolute proteomics (QTAP) quantifies proteins by measuring the signature peptides produced from target proteins by trypsin digestion. The selection of signature peptides is critical for reliable peptide quantification. The purpose of this study was to comprehensively assess the digestion efficiency and stability of tryptic peptides and to identify optimal signature peptides for human hepatic transporters and membrane marker proteins. METHODS: The plasma membrane fraction of the human liver was digested at different time points and the peptides were comprehensively quantified using quantitative proteomics. Transporters and membrane markers were quantified using the signature peptides by QTAP. RESULTS: Tryptic peptides were classified into clusters with low digestion efficiency, low stability, and high digestion efficiency and stability. Using the cluster information, we found that a proline residue next to the digestion site or the peptide position in or close to the transmembrane domains lowers digestion efficiency. A peptide containing cysteine at the N-terminus or arginine-glycine lowers peptide stability. Based on this information and the time course of peptide quantification, optimal signature peptides were identified for human hepatic transporters and membrane markers. The quantification of transporters with multiple signature peptides yielded consistent absolute values with less than 30% of coefficient variants in human liver microsomes and homogenates. CONCLUSIONS: The signature peptides selected in the present study enabled the reliable quantification of human hepatic transporters. The QTAP protocol using these optimal signature peptides provides quantitative data on hepatic transporters usable for integrated pharmacokinetic studies.


Assuntos
Peptídeos , Proteômica , Humanos , Proteômica/métodos , Proteínas de Membrana Transportadoras/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Digestão , Tripsina/química
10.
Biol Pharm Bull ; 45(6): 751-756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35650102

RESUMO

Circadian rhythms influence the transport function of the blood-brain barrier (BBB) and peripheral organs. However, the influence of circadian rhythms on protein expression in the BBB remains to be completely elucidated. Therefore, we aimed to investigate diurnal changes in protein expression in the mouse BBB using quantitative proteomics. Quantitative proteomics showed that the expression of 67, 10, and 20 proteins in the isolated mouse brain capillary fraction changed significantly at zeitgeber time (ZT) 6, 12, and 18, respectively, compared to ZT0. Among them, the levels of 44 proteins were significantly increased at ZT6 and then returned to the same level as ZT0 at ZT12 and ZT18. Gene ontology analysis indicated that the proteins significantly increased at ZT6 were majorly related to translation. The brain capillary endothelial cell-selective proteins sepiapterin reductase and vascular endothelial growth factor receptor 2 showed diurnal variation. In contrast, the expression of ABC transporters, SLC transporters, and receptors associated with receptor-mediated transcytosis, and tight junction proteins did not change within a day. The present findings demonstrated that protein expression related to transport function and physical barrier at the BBB was maintained throughout the day, although the proteins involved in some biological processes exhibited diurnal variation at the BBB.


Assuntos
Barreira Hematoencefálica , Ritmo Circadiano , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Camundongos , Proteômica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
11.
Biochem Biophys Res Commun ; 557: 273-279, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33894414

RESUMO

Recently, the novel coronavirus (SARS-CoV-2), which has spread from China to the world, was declared a global public health emergency, which causes lethal respiratory infections. Acetylation of several proteins plays essential roles in various biological processes, such as viral infections. We reported that the nucleoproteins of influenza virus and Zaire Ebolavirus were acetylated, suggesting that these modifications contributed to the molecular events involved in viral replication. Similar to influenza virus and Ebolavirus, the coronavirus also contains single-stranded RNA, as its viral genome interacts with the nucleocapsid (N) proteins. In this study, we report that SARS-CoV and SARS-CoV-2 N proteins are strongly acetylated by human histone acetyltransferases, P300/CBP-associated factor (PCAF), and general control nonderepressible 5 (GCN5), but not by CREB-binding protein (CBP) in vitro. Liquid chromatography-mass spectrometry analyses identified 2 and 12 acetyl-lysine residues from SARS-CoV and SARS-CoV-2 N proteins, respectively. Particularly in the SARS-CoV-2 N proteins, the acetyl-lysine residues were localized in or close to several functional sites, such as the RNA interaction domains and the M-protein interacting site. These results suggest that acetylation of SARS-CoV-2 N proteins plays crucial roles in their functions.


Assuntos
COVID-19/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Histona Acetiltransferases/metabolismo , SARS-CoV-2/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Proteína de Ligação a CREB/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Humanos , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , SARS-CoV-2/química
12.
Mol Pharm ; 18(4): 1593-1603, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617269

RESUMO

Oral delivery of insulin remains a challenge owing to its poor permeability across the small intestine and enzymatic digestion in the gastrointestinal tract. In a previous study, we identified a small intestine-permeable cyclic peptide, C-DNPGNET-C (C-C disulfide bond, cyclic DNP peptide), which facilitated the permeation of macromolecules. Here, we showed that intraintestinal and oral coadministration of insulin with the cyclic DNP derivative significantly reduced blood glucose levels by increasing the portal plasma insulin concentration following permeation across the small intestine of mice. We also found that protecting the cyclic DNP derivative from enzymatic digestion in the small intestine of mice using d-amino acids and by the cyclization of DNP peptide was essential to enhance cyclic DNP derivative-induced insulin absorption across the small intestine. Furthermore, intraintestinal and oral coadministration of insulin hexamer stabilized by zinc ions (Zn-insulin) with cyclic D-DNP derivative was more effective in facilitating insulin absorption and inducing hypoglycemic effects in mice than the coadministration of insulin with the cyclic D-DNP derivative. Moreover, Zn-insulin was more resistant to degradation in the small intestine of mice compared to insulin. Intraintestinal and oral coadministration of Zn-insulin with cyclic DNP derivative also reduced blood glucose levels in a streptozotocin-induced diabetes mellitus mouse model. A single intraintestinal administration of the cyclic D-DNP derivative did not induce any cytotoxicity, either locally in the small intestine or systemically. In summary, we demonstrated that coadministration of Zn-insulin with cyclic D-DNP derivative could enhance oral insulin absorption across the small intestine in mice.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina Regular Humana/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Zinco/química , Administração Oral , Animais , Glicemia/análise , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Insulina Regular Humana/química , Insulina Regular Humana/metabolismo , Insulina Regular Humana/farmacocinética , Absorção Intestinal , Intestino Delgado/metabolismo , Masculino , Camundongos , Peptídeos Cíclicos/farmacocinética , Permeabilidade , Proteólise , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
13.
Drug Discov Today Technol ; 39: 23-29, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34906323

RESUMO

Membrane proteins mediate various biological processes. Most drugs commercially available target proteins on the cell surface. Therefore, proteomics of plasma membrane proteins provides useful information for drug discovery. However, membrane proteins are one of the most difficult biological groups to quantify by proteomics because of their hydrophobicity and low protein content. To obtain unbiased quantitative membrane proteomics data, specific strategies should be followed during sample preparation. This review explores the most recent advances in sample preparation for the quantitative analysis of the membrane proteome, including enrichment by subcellular fractionation and trypsin digestion.


Assuntos
Proteoma , Proteômica , Proteínas de Membrana
14.
Biol Pharm Bull ; 44(10): 1551-1556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602565

RESUMO

Metastasis of cancer cells to lymph nodes (LN) is a common modality of metastasis in clinical settings, but the mechanisms involved in lymphatic metastasis remain unclear compared to hematogenous metastasis to bones and the brain. To elucidate the molecular mechanisms responsible for melanoma LN metastasis, we first generated LN metastasis-prone melanoma cells (C8161F2) by the sequential in vivo transplantation of parental melanoma cells (C8161F0). Although the in vitro/in vivo proliferative potential of these melanoma cells were similar, the metastatic potential of the C8161F2 for LNs was significantly enhanced. We then conducted a proteomics analysis to identify the proteins and pathways that contribute to LN metastasis. We identified six proteins (three: up-regulated and three: down-regulated) whose expressions were statistically significantly different by more than 2-fold in the two cell groups. Some of these genes are responsible for the activation of the transforming growth factor-ß (TGF-ß)-related pathway, a well-known inducer of epithelial-mesenchymal transition (EMT). In addition, a gene ontology analysis revealed that the enhanced cell-cell adhesion appears to be involved in lymphatic metastasis. In conclusion, we established highly lymphatic metastatic melanoma cells, which would be valuable for studies of the molecular mechanisms responsible for lymphatic metastasis.


Assuntos
Metástase Linfática/genética , Melanoma/genética , Neoplasias Cutâneas/patologia , Animais , Adesão Celular/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Linfonodos/patologia , Metástase Linfática/patologia , Masculino , Melanoma/secundário , Camundongos , Proteômica , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mol Cell Proteomics ; 18(2): 245-262, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30381327

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease that predisposes individuals to developing benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). The mechanism of NF1-tumorigenesis or the curatives have not been established. Using unique trascriptome and proteome integration method, iPEACH (1), we previously identified translationally controlled tumor protein (TCTP) as a novel biological target for NF1-associated tumors (2). Here, we identified specific TCTP-interacting proteins by sequential affinity purification and data-independent mass spectrometry acquisition (AP-DIA/SWATH) to investigate the role of TCTP in NF1-associated malignant tumors. TCTP mainly interacts with proteins related to protein synthesis and especially to elongation factor complex components, including EF1A2, EF1B, EF1D, EF1G, and valyl-tRNA synthetase (VARS), in NF1-deficient malignant tumor cells. Interestingly, TCTP preferentially binds to EF1A2 (normally found only in neural and skeletal-muscle cells and several cancer cells), rather than EF1A1 despite the high homologies (98%) in their sequences. The docking simulation and further validations to study the interaction between TCTP and EF1A2 revealed that TCTP directly binds with EF1A2 via the contact areas of EF1A2 dimerization. Using unique and common sequences between EF1A2 and EF1A1 in AP-DIA/SWATH, we quantitatively validated the interaction of EF1A2 and TCTP/other elongation factors and found that TCTP coordinates the translational machinery of elongation factors via the association with EF1A2. These data suggest that TCTP activates EF1A2-dependent translation by mediating complex formation with other elongation factors. Inhibiting the TCTP-EF1A2 interaction with EF1A2 siRNAs or a TCTP inhibitor, artesunate, significantly down-regulated the factors related to protein translation and caused dramatic suppression of growth/translation in NF1-associated tumors. Our findings demonstrate that a specific protein translation machinery related to the TCTP-EF1A2 interaction is functionally implicated in the tumorigenesis and progression of NF1-associated tumors and could represent a therapeutic target.


Assuntos
Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica/métodos , Neurofibromatose 1/metabolismo , Neurofibrossarcoma/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Proteômica/métodos , Sítios de Ligação , Biomarcadores Tumorais/química , Linhagem Celular Tumoral , Cromatografia de Afinidade , Células HeLa , Humanos , Espectrometria de Massas , Modelos Moleculares , Simulação de Acoplamento Molecular , Neurofibromatose 1/genética , Neurofibromina 1/genética , Neurofibrossarcoma/genética , Elongação Traducional da Cadeia Peptídica , Fator 1 de Elongação de Peptídeos/química , Ligação Proteica , Mapas de Interação de Proteínas , Proteína Tumoral 1 Controlada por Tradução
16.
J Proteome Res ; 19(8): 3542-3553, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628487

RESUMO

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. The purpose of the present study was to identify GBM cell-selective secreted proteins by analyzing conditioned media (CM) from GBM, breast, and colon cancer cell lines using sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) and targeted proteomics. We identified 2371 proteins in the CM from GBM and the other cancer cell lines. Among the proteins identified, 15 showed significantly higher expression in the CM from GBM cell lines than in those from other cancer cell lines. These GBM-selective secreted proteins were further quantified in the cerebrospinal fluid (CSF) from patients with GBM. Laminin subunit alpha-4 (LAMA4) and osteopontin (OPN) had increased expression levels in the CSF from GBM patients compared to those from non-brain tumor patients. In addition, the areas under the curves in a receiver operating characteristic analysis of LAMA4 and OPN were greater than 0.9, allowing for discrimination of GBM patients from non-brain tumor patients. The CSF levels of LAMA4 and OPN were also significantly correlated with the GBM tumor volume. These results suggest that LAMA4 and OPN are secreted from GBM cells into the CSF and appear to be candidates as diagnostic markers and therapeutic targets for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Laminina/genética , Osteopontina/genética , Adulto , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioblastoma/genética , Humanos , Proteômica
17.
J Proteome Res ; 19(1): 75-84, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31599158

RESUMO

We found that nuclear envelopes stabilize against surfactants in the presence of ethylene glycol (EG). We, therefore, developed a novel subcellular fractionation approach for proteomics using RIPA buffer containing EG and phase transfer surfactants. This method involves separating the cells into the cytoplasm, organelles, and nucleus, including intermediate filaments without ultracentrifugation. These fractions are directly applicable to sample preparation for shotgun proteomics as they have no mass spectrometry (MS)-incompatible chemicals, whereas those separated by traditional fractionation protocols require desalting. This protocol is successfully applied to subcellular fractionation with only 3.5 × 105 cells. Here, it was combined with phosphoproteomics and proteomics to identify phosphorylation sites regulating protein subcellular localization. In total, 59 phosphorylation sites on 42 phosphopeptides and 32 proteins showing different enrichment patterns between phosphoproteomics and the corresponding proteomics were identified, which are potential candidate sites to regulate the protein subcellular localization, including serine 706 on CD44 and serine 22 on lamin A/C.


Assuntos
Fosfopeptídeos , Proteômica , Fracionamento Químico , Espectrometria de Massas , Proteínas , Frações Subcelulares
18.
Cancer Sci ; 111(7): 2413-2422, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32324311

RESUMO

We have previously shown that gelsolin (GSN) levels are significantly lower in the blood of patients with glioblastoma (GBM) than in healthy controls. Here, we analyzed the function of GSN in GBM and examined its clinical significance. Furthermore, microRNAs involved in GSN expression were also identified. The expression of GSN was determined using western blot analysis and found to be significantly lower in GBM samples than normal ones. Gelsolin was mainly localized in normal astrocytes, shown using immunohistochemistry and immunofluorescence. Higher expression of GSN was correlated with more prolonged progression-free survival and overall survival. Gelsolin knockdown using siRNA and shRNA markedly accelerated cell proliferation and invasion in GBM in vitro and in vivo. The inactive form of glycogen synthase kinase-3ß was dephosphorylated by GSN knockdown. In GBM tissues, the expression of GSN and microRNA (miR)-654-5p and miR-450b-5p showed an inverse correlation. The miR-654-5p and miR-450b-5p inhibitors enhanced GSN expression, resulting in reduced proliferation and invasion. In conclusion, GSN, which inhibits cell proliferation and invasion, is suppressed by miR-654-5p and miR-450b-5p in GBM, suggesting that these miRNAs can be targets for treating GBM.


Assuntos
Gelsolina/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , MicroRNAs/genética , Animais , Apoptose/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Gelsolina/metabolismo , Técnicas de Inativação de Genes , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Camundongos , Gradação de Tumores , Fenótipo , Prognóstico , Interferência de RNA
19.
Mol Pharm ; 17(11): 4101-4113, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32902293

RESUMO

Quantifying the protein levels of drug transporters in plasma membrane fraction helps elucidate the function of these transporters. In this study, we conducted a proteomic evaluation of enriched drug-related transporter proteins in plasma membrane fraction prepared from mouse liver and kidney tissues using the membrane protein extraction kit and a bead homogenizer. Crude and plasma membrane fractions were prepared using either the Dounce or bead homogenizer, and protein levels were determined using quantitative proteomics. In liver tissues, the plasma membrane fractions were more enriched in transporter proteins than the crude membrane fractions; the average enrichment ratios of plasma-to-crude membrane fractions were 3.31 and 6.93 using the Dounce and bead homogenizers, respectively. The concentrations of transporter proteins in plasma membrane fractions determined using the bead homogenizer were higher than those determined using the Dounce homogenizer. Meanwhile, in kidney tissues, the plasma membrane fractions were enriched in transporters localized in the brush-border membrane to the same degree for both the homogenizers; however, the membrane fractions obtained using either homogenizer were not enriched in Na+/K+-ATPase and transporters localized in the basolateral membrane. These results indicate that fractionation, using the bead homogenizer, yielded transporter-enriched plasma membrane fractions from mouse liver and kidney tissues; however, no enrichment of basolateral transporters was observed in plasma membrane fractions prepared from kidney tissues.


Assuntos
Membrana Celular/metabolismo , Rim/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteoma , Animais , Transporte Biológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica/métodos , ATPase Trocadora de Sódio-Potássio/metabolismo
20.
Pharm Res ; 37(3): 61, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32124083

RESUMO

PURPOSE: Cyclocreatine, a creatine analog, is a candidate drug for treating patients with cerebral creatine deficiency syndromes (CCDSs) caused by creatine transporter (CRT, SLC6A8) deficiency, which reduces brain creatine level. The purpose of this study was to clarify the characteristics of cyclocreatine transport in HEK293 cells, which highly express endogenous CRT, in hCMEC/D3 cells, a human blood-brain barrier (BBB) model, and in CCDSs patient-derived fibroblasts with CRT mutations. METHODS: Cells were incubated at 37°C with [14C]cyclocreatine (9 µM) and [14C]creatine (9 µM) for specified periods of times in the presence or absence of inhibitors, while the siRNAs were transfected by lipofection. Protein expression and mRNA expression were quantified using targeted proteomics and quantitative PCR, respectively. RESULTS: [14C]Cyclocreatine was taken up by HEK293 cells in a time-dependent manner, while exhibiting saturable kinetics. The inhibition and siRNA knockdown studies demonstrated that the uptake of [14C]cyclocreatine by both HEK293 and hCMEC/D3 cells was mediated predominantly by CRT as well as [14C]creatine. In addition, uptake of [14C]cyclocreatine and [14C]creatine by the CCDSs patient-derived fibroblasts was found to be largely reduced. CONCLUSION: The present study suggests that cyclocreatine is a CRT substrate, where CRT is the predominant contributor to influx of cyclocreatine into the brain at the BBB. Our findings provide vital insights for the purposes of treating CCDSs patients using cyclocreatine.


Assuntos
Barreira Hematoencefálica/metabolismo , Creatina/deficiência , Creatinina/análogos & derivados , Fibroblastos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Barreira Hematoencefálica/citologia , Linhagem Celular , Células Cultivadas , Creatina/metabolismo , Creatinina/metabolismo , Creatinina/farmacocinética , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA