Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 227(9): 1068-1072, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36461940

RESUMO

Molnupiravir is an antiviral agent recently used for treating coronavirus disease 2019 (COVID-19). Here, we demonstrate that N4-hydroxycytidine (NHC), a molnupiravir metabolite, treated with cytidine deaminase (CDA) induced Cu(II)-mediated oxidative DNA damage in isolated DNA. A colorimetric assay revealed hydroxylamine generation from CDA-treated NHC. The site specificity of DNA damage also suggested involvement of hydroxylamine in the damage. Furthermore, Cu(I) and H2O2 play an important role in the DNA damage. We propose oxidative DNA damage via CDA-mediated metabolism as a possible mutagenic mechanism of NHC, highlighting the need for careful risk assessment of molnupiravir use in therapies for viral diseases, including COVID-19.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Peróxido de Hidrogênio , Hidroxilaminas/farmacologia , Estresse Oxidativo , Dano ao DNA
2.
Cancer Cell Int ; 23(1): 185, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644594

RESUMO

BACKGROUND: The transferrin receptor (TfR) encoded by TFRC gene is the main cellular iron importer. TfR is highly expressed in many cancers and is expected to be a promising new target for cancer therapy; however, its role in nasopharyngeal carcinoma (NPC) remains unknown. METHODS: The TfR levels were investigated in NPC tissues and cell lines using immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. Knockdown of TFRC using two siRNA to investigate the effects on intracellular iron level and biological functions, including proliferation by CKK-8 assay, colony formation, cell apoptosis and cell cycle by flow cytometry, migration and invasion, and tumor growth in vivo by nude mouse xenografts. RNA sequencing was performed to find possible mechanism after TFRC knockdown on NPC cells and further verified by western blotting. RESULTS: TfR was overexpressed in NPC cell lines and tissues. Knockdown of TFRC inhibited cell proliferation concomitant with increased apoptosis and cell cycle arrest, and it decreased intracellular iron, colony formation, migration, invasion, and epithelial-mesenchymal transition in HK1-EBV cells. Western blotting showed that TFRC knockdown suppressed the levels of the iron storage protein FTH1, anti-apoptotic marker BCL-xL, and epithelial-mesenchymal transition markers. We confirmed in vivo that TFRC knockdown also inhibited NPC tumor growth and decreased Ki67 expression in tumor tissues of nude mouse xenografts. RNA sequencing and western blotting revealed that TFRC silencing inhibited the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS: These results indicated that TfR was overexpressed in NPC, and TFRC knockdown inhibited NPC progression by suppressing the PI3K/Akt/mTOR signaling pathway. Thus, TfR may serve as a novel biomarker and therapeutic target for NPC.

3.
Carcinogenesis ; 43(2): 94-103, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34922336

RESUMO

Growth differentiation factor-10 (GDF10) belongs to a member of the transforming growth factor-ß (TGF-ß) superfamily. Dysfunction of the TGF-ß pathway can lead to carcinoma progression. Previous studies have shown that GDF10 acts as a tumor suppressor gene in some cancers. However, the molecular mechanisms of the association between GDF10 and cell functions in nasopharyngeal carcinoma (NPC) remain unclear. In this study, the expression and methylation levels of GDF10 were studied in human subjects and cell lines. Furthermore, overexpression of GDF10 was used to explore its biological function and potential mechanism in NPC cell lines. GDF10 was downregulated in NPC owing to its aberrant promoter methylation. After treatment with 5-aza-2'-deoxycytidine, the expression of GDF10 in NPC cells was reversed. We also confirmed that the overexpression of GDF10 significantly inhibited cell proliferation and tumor growth both in vitro and in vivo, respectively. Additionally, GDF10 overexpression in NPC cells attenuated migration and invasion and inhibited epithelial-to-mesenchymal transition with a decrease in nuclear Smad2 and NF-κB protein accumulation. GDF10 was silenced owing to its promoter hypermethylation, and it might originally act as a functional tumor suppressor via TGF-ß/Smad and NF-κB signaling pathways in NPC.


Assuntos
Transição Epitelial-Mesenquimal , Fator 10 de Diferenciação de Crescimento , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Fator 10 de Diferenciação de Crescimento/genética , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
4.
Biochem Biophys Res Commun ; 609: 62-68, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35413541

RESUMO

RNF213, a susceptibility gene for moyamoya disease, is associated with stress responses to various stressors. We previously reported that Rnf213 knockout (KO) mitigated endoplasmic reticulum (ER) stress-induced diabetes in the Akita mouse model of diabetes. However, the role of RNF213 in ER stress regulation remains unknown. In the present study, RNF213 knockdown significantly inhibited the upregulation of ER stress markers (CHOP and spliced XBP1) by chemical ER stress-inducers in HeLa cells. Levels of SEL1L, a critical molecule in ER-associated degradation (ERAD), were increased by RNF213 knockdown, and SEL1L knockdown prevented the inhibitory effect of RNF213 suppression on ER stress in HeLa cells, indicating SEL1L involvement in this inhibition of ER stress. SEL1L upregulation was also confirmed in pancreatic islets of Rnf213 KO/Akita mice and in Rnf213 KO mouse embryonic fibroblasts. Additionally, RNF213 suppression increased levels of HRD1, which forms a complex with SEL1L to degrade misfolded protein in cells under ER stress. In conclusion, we demonstrate that RNF213 depletion inhibits ER stress possibly through elevation of the SEL1L-HRD1 complex, thereby promoting ERAD in vitro and in vivo.


Assuntos
Estresse do Retículo Endoplasmático , Doença de Moyamoya , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Estresse do Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático , Fibroblastos/metabolismo , Células HeLa , Humanos , Camundongos , Doença de Moyamoya/genética , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
5.
BMC Cancer ; 21(1): 929, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407796

RESUMO

BACKGROUND: To assess the effects of Epstein-Barr virus (EBV) and human papillomavirus (HPV) infection on the tumor microenvironment, we examined the relationship between viral infection status, macrophage migration inhibitory factor (MIF), and tumor-associated macrophages in nasopharyngeal carcinoma (NPC). METHODS: A tissue microarray containing 150 cores from 90 patients with NPC and six with chronic inflammation was used. EBV and HPV status were detected using in situ hybridization with commercial EBER1 and HPV16/18 probes. Immunofluorescence double staining of MIF, pan-macrophage marker CD68, M1 macrophage marker CD11c, and M2 macrophage marker CD163 were analyzed using the same tissue microarray. The levels of these markers between NPC and inflammation cases and between tumor nests and stroma were compared. Correlations among these markers were analyzed. RESULTS: We found EBER1(+) cases in 90% of NPC patients, including 10% EBV/HPV co-infection. M1 macrophages mainly infiltrated the tumor nest, while M2 macrophages infiltrated the tumor stroma. We found a significant positive correlation between EBER1 levels and MIF levels in tumor nests and a significant positive correlation between HPV16/18 and CD11c(+) cell levels in NPC tissues. CONCLUSIONS: It is suggested that MIF is associated with EBV, and M1 macrophage infiltration is affected by HPV status in NPC.


Assuntos
Coinfecção/complicações , Infecções por Vírus Epstein-Barr/complicações , Oxirredutases Intramoleculares/metabolismo , Ativação de Macrófagos , Fatores Inibidores da Migração de Macrófagos/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Infecções por Papillomavirus/complicações , Alphapapillomavirus/isolamento & purificação , Estudos de Casos e Controles , Infecções por Vírus Epstein-Barr/virologia , Feminino , Seguimentos , Herpesvirus Humano 4/isolamento & purificação , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/epidemiologia , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/epidemiologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/virologia , Infecções por Papillomavirus/virologia , Prognóstico , RNA Viral/metabolismo
6.
Cancer Sci ; 111(7): 2536-2545, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32324312

RESUMO

Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in Southeast Asia, hence, identifying easily detectable biomarkers for NPC screening is essential for better diagnosis and prognosis. Using genome-wide and targeted analyses based on next-generation sequencing approaches, we previously showed that gene promoters are hypermethylated in NPC tissues. To confirm whether DNA methylation rates of genes could be used as biomarkers for NPC screening, 79 histologically diagnosed NPC patients and 29 noncancer patients were recruited. A convenient quantitative analysis of DNA methylation using real-time PCR (qAMP) was carried out, involving pretreatment of tissue DNA, and circulating cell-free DNA (ccfDNA) from nonhemolytic plasma, with methylation-sensitive and/or methylation-dependent restriction enzymes. The qAMP analyses revealed that methylation rates of RERG, ZNF671, ITGA4, and SHISA3 were significantly higher in NPC primary tumor tissues compared to noncancerous tissues, with sufficient diagnostic accuracy of the area under receiver operating characteristic curves (AUC). Interestingly, higher methylation rates of RERG in ccfDNA were statistically significant and yielded a very good AUC; however, those of ZNF671, ITGA4, and SHISA3 were not significant. Furthermore, the combination of methylation rates of RERG and ZNF671 in ccfDNA showed higher diagnostic accuracy than either of them individually. In conclusion, the methylation rates of specific genes in ccfDNA can serve as novel biomarkers for early detection and screening of NPC.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , Metilação de DNA , GTP Fosfo-Hidrolases/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Proteínas Supressoras de Tumor/genética , Adulto , Área Sob a Curva , Epigênese Genética , Feminino , Humanos , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/epidemiologia , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/epidemiologia , Metástase Neoplásica , Estadiamento de Neoplasias , Curva ROC
7.
Arch Toxicol ; 94(8): 2691-2705, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32435916

RESUMO

1,2-Dichloropropane (1,2-DCP) is recognized as the causative agent for cholangiocarcinoma among offset color proof-printing workers in Japan. The aim of the present study was to characterize the molecular mechanisms of 1,2-DCP-induced hepatotoxic effects by proteomic analysis. We analyzed quantitatively the differential expression of proteins in the mouse liver and investigated the role of P450 in mediating the effects of 1,2-DCP. Male C57BL/6JJcl mice were exposed to 0, 50, 250, or 1250 ppm 1,2-DCP and treated with either 1-aminobenzotriazole (1-ABT), a nonselective P450 inhibitor, or saline, for 8 h/day for 4 weeks. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF/MS) was used to detect and identify proteins affected by the treatment. PANTHER overrepresentation test on the identified proteins was conducted. 2D-DIGE detected 61 spots with significantly different intensity between 0 and 250 ppm 1,2-DCP groups. Among them, 25 spots were identified by MALDI-TOF/TOF/MS. Linear regression analysis showed significant trend with 1,2-DCP level in 17 proteins in mice co-treated with 1-ABT. 1-ABT mitigated the differential expression of these proteins. The gene ontology enrichment analysis showed overrepresentation of proteins functionally related to nickel cation binding, carboxylic ester hydrolase activity, and catalytic activity. The results demonstrated that exposure to 1,2-DCP altered the expression of proteins related with catalytic and carboxylic ester hydrolase activities, and that such effect was mediated by P450 enzymatic activity.


Assuntos
Carcinógenos Ambientais/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Propano/análogos & derivados , Proteoma/efeitos dos fármacos , Proteômica , Animais , Hidrolases de Éster Carboxílico/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Propano/toxicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial Bidimensional
8.
Int J Mol Sci ; 21(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443552

RESUMO

Alzheimer's disease (AD) is the most common form of dementia among older people. Amyloid ß (Aß) aggregation has been the focus for a therapeutic target for the treatment of AD. Naturally occurring polyphenols have an inhibitory effect on Aß aggregation and have attracted a lot of attention for the development of treatment strategies which could mitigate the symptoms of AD. However, considerable evidence has shown that the pro-oxidant mechanisms of polyphenols could have a deleterious effect. Our group has established an assay system to evaluate the pro-oxidant characteristics of chemical compounds, based on their reactivity with DNA. In this review, we have summarized the anti-Aß aggregation and pro-oxidant properties of polyphenols. These findings could contribute to understanding the mechanism underlying the potential risk of polyphenols. We would like to emphasize the importance of assessing the pro-oxidant properties of polyphenols from a safety point of view.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Polifenóis/toxicidade , Agregação Patológica de Proteínas , Doença de Alzheimer/patologia , Flavonoides/química , Flavonoides/toxicidade , Humanos , Oxirredução , Polifenóis/química , Espécies Reativas de Oxigênio
9.
J Clin Biochem Nutr ; 67(2): 167-173, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33041514

RESUMO

It is well-known that the cornu Ammonis 1 (CA1) sector of hippocampus is vulnerable for the ischemic insult, whereas the dentate gyrus (DG) is resistant. Here, to elucidate its underlying mechanism, alternations of protein oxidation and expression of DG in the monkey hippocampus after ischemia-reperfusion by the proteomic analysis were studied by comparing CA1 data. Oxidative damage to proteins such as protein carbonylation interrupt the protein function. Carbonyl modification of molecular chaperone, heat shock 70 kDa protein 1 (Hsp70.1) was increased remarkably in CA1, but slightly in DG. In addition, expression levels of nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase sirtuin-2 (SIRT2) was significantly increased in DG after ischemia, but decreased in CA1. Accordingly, it is likely that SIRT2 upregulation and negligible changes of carbonylation of Hsp70.1 exert its neuroprotective effect in DG. On the contrary, carbonylation level of dihydropyrimidinase related protein 2 (DRP-2) and l-lactate dehydrogenase B chain (LDHB) were slightly increased in CA1 as shown previously, but remarkably increased in DG after ischemia. It is considered that DRP-2 and LDHB are specific targets of oxidative stress by ischemia insult and high carbonylation levels of DRP-2 may play an important role in modulating ischemic neuronal death.

10.
Transfusion ; 59(3): 1080-1089, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30588642

RESUMO

BACKGROUND: A new platelet (PLT) additive solution, bicarbonated Ringer's solution supplemented with acid-citrate-dextrose Formula A, termed BRS-A, as well as a new automated closed system cell processor for washing PLTs have recently been developed. This study evaluated the in vitro properties of PLTs with the automated system versus the manual method, using the BRS-A additive solution for washing and storage. METHODS: ABO-identical apheresis PLTs in 100% plasma were pooled and split equally for control (in 100% plasma or a manual method) and test (ACP215 automated system) units. In vitro characteristics of PLTs washed with the automated system were compared to those of PLTs in 100% plasma (Study 1) or washed with a manual method (Study 2) during the 7-day storage. RESULTS: In Study 1, hypotonic shock response, aggregation response, mitochondrial membrane potential, adenosine triphosphate, and CD42b mean fluorescence intensity were comparable in the control and test groups during the 7-day storage. CD62P expression was lower in the test group than controls on Days 3 and 7. The level of platelet-derived microparticles (PDMPs) in the test group on Days 1 and 2 were higher than those in controls. In contrast, the levels of soluble CD40 ligand (sCD40L) and regulated upon activation of normal T-cell expressed and secreted (RANTES) in the test units were lower than controls. In Study 2, no significant differences were found in all in vitro properties except for PLT count and the levels of PDMPs in the test units were higher than controls during storage. CONCLUSION: Apheresis PLTs washed with the automated system using BRS-A additive solution maintained in vitro properties during storage. Washing methods influenced PDMP levels but not sCD40L and RANTES.


Assuntos
Plaquetas/citologia , Micropartículas Derivadas de Células/química , Plaquetoferese/métodos , Sistema ABO de Grupos Sanguíneos , Plaquetas/metabolismo , Preservação de Sangue/métodos , Ligante de CD40/metabolismo , Micropartículas Derivadas de Células/metabolismo , Humanos , Soluções Isotônicas , Selectina-P/metabolismo
11.
Arch Toxicol ; 93(7): 1993-2006, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31123803

RESUMO

Acrylamide has been used industrially and also found in certain foods cooked at high temperatures. Previous reports described acrylamide-related human intoxication who presented with ataxia, memory impairment, and/or illusion. The aim of this study was to characterize the molecular mechanisms of neurotoxicity of acrylamide by analyzing the expression levels of various proteins in the hippocampus of rats exposed to acrylamide. Male Wistar rats were administered acrylamide by gavage at 0, 2, and 20 mg/kg for 1 week or 0, 0.2, 2, and 20 mg/kg for 5 weeks. At the end of the experiment, the hippocampus was dissected out and proteins were extracted for two-dimensional difference gel electrophoresis combined with matrix-assisted laser-desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF/MS). MALDI-TOF/TOF/MS identified significant changes in two proteins in the 1-week and 22 proteins in the 5-week exposure groups. These changes were up-regulation in 9 and down-regulation in 13 proteins in the hippocampus of rats exposed to acrylamide at 20 mg/kg for 5 weeks. PANTHER overrepresentation test based on the GO of biological process showed significant overrepresentation in proteins annotated to nicotinamide nucleotide metabolic process, coenzyme biosynthetic process, pyruvate metabolic process, and carbohydrate metabolic process. The test also showed significant overrepresentation in proteins annotated to creatinine kinase activity for the GO of molecular function as well as myelin sheath, cytoplasmic part, and cell body for the GO of cellular component. Comparison with a previous proteomic study on hippocampal proteins in rats exposed to 1-bromopropane identified triosephosphate isomerase, mitochondrial creatine kinase U-type, creatine kinase ß-type and proteasome subunit α type-1 as proteins affected by exposure to acrylamide and 1-bromopropane, suggesting a common mechanism of neurotoxicity for soft electrophiles.


Assuntos
Acrilamida/toxicidade , Hipocampo/efeitos dos fármacos , Proteínas/metabolismo , Acrilamida/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Proteômica , Ratos , Ratos Wistar , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
12.
Adv Exp Med Biol ; 1155: 533-541, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468429

RESUMO

Taurine displays anti-tumor activity in some kinds of human cancers. However, the underlying mechanisms are poorly understood. Epstein-Barr virus-related nasopharyngeal carcinoma (NPC) is a distinctive type of head and neck cancer in Southeast Asia with the highest incidence in South China. We examined an apoptosis-inducing effect of taurine against NPC cells (HK1 and HK1-EBV) to clarify the mechanisms of anti-tumor effects of taurine by immunocytochemical methods. We observed that taurine induced cleavage of caspase-9/3 in a concentration-dependent manner, suggesting the involvement of mitochondrial apoptotic signals. Both PTEN and p53 activation were detected in a dose-dependent manner after taurine treatment in NPC cells. In conclusion, taurine may play an anti-tumor role by activating tumor suppressor PTEN and p53.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Taurina/farmacologia , Linhagem Celular Tumoral , China , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
13.
Amino Acids ; 50(12): 1749-1758, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30225664

RESUMO

Nasopharyngeal carcinoma (NPC) is a distinctive type of head and neck malignancy with a high incidence in southern China. Previous studies have confirmed that taurine shows an anti-cancer effect on a variety of human tumors by inhibiting cell proliferation and inducing apoptosis. However, the underlying molecular mechanism of its anti-cancer effect on NPC is not well understood. To clarify these anti-cancer mechanisms, we performed cell viability and colony formation assays. Apoptotic cells were quantified by flow cytometry. The expression levels of apoptosis-related proteins were evaluated by Western blot. The results showed that taurine markedly inhibited cell proliferation in NPC cells, but only slightly in an immortalized normal nasopharyngeal cell line. Taurine suppressed colony formation and induced apoptosis of NPC cell lines in a dose-dependent manner. Furthermore, taurine increased the active form of caspase-9/3 in a dose-dependent manner. Taurine down-regulated the anti-apoptotic protein Bcl-xL and up-regulated the pro-apoptotic protein Bax and GRP78, a major endoplasmic reticulum (ER) chaperone. These results suggest the involvement of mitochondrial and ER stress signaling in apoptosis. In addition, taurine increased the levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10) and p53, and reduced phosphorylated Akt (protein kinase B). In conclusion, taurine may inhibit cell proliferation and induce apoptosis in NPC through PTEN activation with concomitant Akt inactivation.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Taurina/farmacologia , Caspase 9/metabolismo , Linhagem Celular Tumoral , China , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
14.
Mediators Inflamm ; 2018: 4867234, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402042

RESUMO

Various CD44 isoforms are expressed in several cancer stem cells during tumor progression and metastasis. In particular, CD44 variant 9 (CD44v9) is highly expressed in chronic inflammation-induced cancer. We investigated the expression of CD44v9 and assessed whether CD44v9 is a selective biomarker of human cholangiocarcinoma (CCA). The expression profile of CD44v9 was evaluated in human liver fluke Opisthorchis viverrini-related CCA (OV-CCA) tissues, human CCA (independent of OV infection, non-OV-CCA) tissues, and normal liver tissues. CD44v9 overexpression was detected by immunohistochemistry (IHC) in CCA tissues. There was a higher level of CD44v9 expression and IHC score in OV-CCA tissues than in non-OV-CCA tissues, and there was no CD44v9 staining in the bile duct cells of normal liver tissues. In addition, we observed significantly higher expression of inflammation-related markers, such as S100P and COX-2, in OV-CCA tissues compared to that in non-OV and normal liver tissues. Thus, these findings suggest that CD44v9 may be a novel candidate CCA stem cell marker and may be related to inflammation-associated cancer development.


Assuntos
Colangiocarcinoma/metabolismo , Receptores de Hialuronatos/metabolismo , Inflamação/metabolismo , Células-Tronco Neoplásicas/metabolismo , Adulto , Proteínas de Ligação ao Cálcio/metabolismo , Colangiocarcinoma/imunologia , Ciclo-Oxigenase 2/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/genética , Inflamação/imunologia , Fígado/metabolismo , Fígado/patologia , Masculino , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/imunologia
15.
BMC Cancer ; 17(1): 489, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716111

RESUMO

BACKGROUND: Epigenetic changes, including DNA methylation, disrupt normal cell function, thus contributing to multiple steps of carcinogenesis. Nasopharyngeal carcinoma (NPC) is endemic in southern China and is highly associated with Epstein-Barr virus (EBV) infection. Significant changes of the host cell methylome are observed in EBV-associated NPC with cancer development. Epigenetic marks for NPC diagnosis are urgently needed. In order to explore DNA methylation marks, we investigated DNA methylation of candidate genes in EBV-associated nasopharyngeal carcinoma. METHODS: We first employed methyl-capture sequencing and cDNA microarrays to compare the genome-wide methylation profiles of seven NPC tissues and five non-cancer nasopharyngeal epithelium (NNE) tissues. We found 150 hypermethylated CpG islands spanning promoter regions and down-regulated genes. Furthermore, we quantified the methylation rates of seven candidate genes using bisulfite amplicon sequencing for nine NPC and nine NNE tissues. RESULTS: All seven candidate genes showed significantly higher methylation rates in NPC than in NNE tissues, and the ratios (NPC/NNE) were in descending order as follows: ITGA4 > RERG > ZNF671 > SHISA3 > ZNF549 > CR2 > RRAD. In particular, methylation levels of ITGA4, RERG, and ZNF671 could distinguish NPC patients from NNE subjects. CONCLUSIONS: We identified the DNA methylation rates of previously unidentified NPC candidate genes. The combination of genome-wide and targeted methylation profiling by next-generation sequencers should provide useful information regarding cancer-specific aberrant methylation.


Assuntos
Carcinoma/genética , Metilação de DNA/genética , Infecções por Vírus Epstein-Barr/genética , GTP Fosfo-Hidrolases/genética , Integrina alfa6/genética , Neoplasias Nasofaríngeas/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Carcinoma/diagnóstico , Carcinoma/patologia , Carcinoma/virologia , Linhagem Celular Tumoral , Ilhas de CpG/genética , Diagnóstico Diferencial , Epigênese Genética/genética , Epitélio/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , Nasofaringe/metabolismo
16.
Dement Geriatr Cogn Disord ; 44(5-6): 343-353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29421784

RESUMO

BACKGROUND: Cerebral amyloid angiopathy (CAA) is classified as type 1 with capillary amyloid ß (Aß) or type 2 without capillary Aß. While it is known that CAA activates complement, an inflammatory mediator, there is no information on the relationship between capillary Aß and complement activation. METHODS: We evaluated 34 autopsy brains, including 22 with CAA and 12 with other neurodegenerative diseases. We assessed the vascular density of CAA by analyzing the expression of complement (C1q, C3d, C6, C5b-9), macrophage scavenger receptor (MSR), and apolipoprotein E (ApoE). RESULTS: Capillary immunostaining for C1q, C3d, MSR, and ApoE was identified almost exclusively in CAA-type1 brains. There was intense expression of C1q, C3d, MSR, and ApoE, as well as weaker expression of C5b-9 and C6 in the arteries/ arterioles of both CAA subtypes, but not in control brains. C5b-9 and C6 were preferentially expressed in arteries/arterioles with subcortical hemorrhage or cortical superficial siderosis. Triple immunofluorescence revealed that C1q, C3d, and ApoE were colocalized with Aß in CAA brain capillaries. CONCLUSION: Complement, MSR, and ApoE were only coexpressed in the presence of Aß accumulation in capillaries, suggesting a role for complement activation in the propagation of Aß. Additionally, C5b-9 expression may be associated with hemorrhagic brain injury in CAA.


Assuntos
Capilares/patologia , Angiopatia Amiloide Cerebral/patologia , Ativação do Complemento , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Arteríolas/metabolismo , Arteríolas/patologia , Autopsia , Encéfalo/patologia , Capilares/metabolismo , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/metabolismo , Proteínas do Sistema Complemento/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Receptores Depuradores/metabolismo
17.
Mediators Inflamm ; 2016: 9343460, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27647953

RESUMO

Nitrative and oxidative DNA damage plays an important role in inflammation-related carcinogenesis. To investigate the involvement of stem cells in Epstein-Barr virus infection-related nasopharyngeal carcinoma (NPC), we used double immunofluorescence staining to examine several cancer stem/progenitor cell markers (CD44v6, CD24, and ALDH1A1) in NPC tissues and NPC cell lines. We also measured 8-nitroguanine formation as an indicator of inflammation-related DNA lesions. The staining intensity of 8-nitroguanine was significantly higher in cancer cells and inflammatory cells in the stroma of NPC tissues than in chronic nasopharyngitis tissues. Expression levels of CD44v6 and ALDH1A1 were significantly increased in cancer cells of primary NPC specimens in comparison to chronic nasopharyngitis tissues. Similarly, more intense staining of CD44v6 and ALDH1A1 was detected in an NPC cell line than in an immortalized nasopharyngeal epithelial cell line. In the case of CD24 staining, there was no significant difference between NPC and chronic nasopharyngitis tissues. 8-Nitroguanine was detected in both CD44v6- and ALDH1A1-positive stem cells in NPC tissues. In conclusion, CD44v6 and ALDH1A1 are candidate stem cell markers for NPC, and the increased formation of DNA lesions by inflammation may result in the mutation of stem cells, leading to tumor development in NPC.


Assuntos
Biomarcadores Tumorais/metabolismo , Dano ao DNA/genética , Inflamação/fisiopatologia , Neoplasias Nasofaríngeas/genética , Células-Tronco Neoplásicas/metabolismo , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1 , Western Blotting , Carcinoma , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Receptores de Hialuronatos/metabolismo , Carcinoma Nasofaríngeo , Retinal Desidrogenase
18.
Toxicol Appl Pharmacol ; 282(2): 151-60, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25448045

RESUMO

1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn(2+))-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p<0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn(2+)-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity.


Assuntos
Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Fosfoproteínas/metabolismo , Proteômica , Solventes/toxicidade , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Hidrocarbonetos Bromados/toxicidade , Masculino , Manganês/metabolismo , Ratos , Ratos Endogâmicos F344
19.
Transfus Apher Sci ; 53(2): 233-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26025656

RESUMO

BACKGROUND: In Japan, no platelet (PLT) additive solutions (PASs) are officially approved for clinical use although blood centers often receive requests for washed PLTs to reduce adverse reactions. Recently, we developed a novel PAS called BRS-A based on clinically available bicarbonated Ringer's solution (BRS), Bicanate and acid-citrate-dextrose formula A (ACD-A), which has been shown to maintain the in vitro properties of PLTs in the condition of <5% residual plasma during 7-day storage. The aim of this study was to evaluate whether another clinically available BRS, Bicarbon with different electrolyte concentrations can be used as a PAS. STUDY DESIGN AND METHODS: Two types of BRS-As were prepared by adding 25 mL of ACD-A to 500 mL of Bicanate or Bicarbon BRSs. Bicanate-based BRS-A and Bicarbon-based BRS-A contain 0.9 or 0.5 mmol/L of magnesium chloride, 95.2 or 100.1 mmol/L of sodium chloride, 4.2 or 5.1 mmol/L of trisodium citrate, and 26.6 or 23.8 mmol/L of sodium bicarbonate, respectively; the other components were identical. Apheresis PLTs stored in these solutions with less than 5% plasma for 7-day storage were compared with regard to their in vitro properties. RESULTS: The pH levels of all units were above 7 throughout storage. The mean PLT volume, hypotonic shock response, glucose consumption, lactate production, swirling, and CD62P and CD42b expression were similar during 7-day storage. The bicarbonate levels in Bicarbon-based BRS-A were lower than those in Bicanate-based BRS-A. CONCLUSION: Differences in concentrations of electrolytes such as magnesium, sodium, citrate, and bicarbonate salts in BRS-A do not affect the in vitro properties of PLTs during 7-day storage. These results indicate that the use of another type of BRS-A based on Bicarbon as a PAS is feasible. Thus, BRS-A can be used in hospitals that do not stock Bicanate but have Bicarbon.


Assuntos
Plaquetas/metabolismo , Preservação de Sangue/métodos , Soluções Isotônicas/química , Soluções Isotônicas/farmacologia , Selectina-P/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Plaquetas/citologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Solução de Ringer , Fatores de Tempo
20.
Chem Res Toxicol ; 27(4): 649-55, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24576317

RESUMO

The mechanism of DNA damage photosensitized by Nile blue (NB) was studied using (32)P-5'-end-labeled DNA fragments. NB bound to the DNA strand was possibly intercalated through an electrostatic interaction. Photoirradiated NB caused DNA cleavage at guanine residues when the DNA fragments were treated with piperidine. Consecutive guanines, the underlined G in 5'-GG and 5'-GGG, were selectively damaged through photoinduced electron transfer. The fluorescence lifetime of NB was decreased by guanine-containing DNA sequence, supporting this mechanism. Single guanines were also slightly damaged by photoexcited NB, and DNA photodamage by NB was slightly enhanced in D2O. These results suggest that the singlet oxygen mechanism also partly contributes to DNA photodamage by NB. DNA damage photosensitized by NB via electron transfer may be an important mechanism in medicinal applications of photosensitizers, such as photodynamic therapy in low oxygen.


Assuntos
Dano ao DNA , DNA/efeitos da radiação , Oxazinas/química , Fármacos Fotossensibilizantes/química , Transporte de Elétrons , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA