Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 710: 149878, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38608492

RESUMO

Sapovirus (SaV) is a nonenveloped RNA virus that causes acute gastroenteritis in humans. Although SaV is a clinically important pathogen in children, an effective vaccine is currently unavailable. The capsid protein VP1 of SaVs forms the outer shell of the virion and is highly diverse, as often seen in the virion-surface proteins of RNA viruses, creating an obstacle for vaccine development. We here report a unique phenomenon pertaining to the variation of SaV VP1. Phylogenetic and information entropy analyses using full-length VP1 sequences from a public database consistently showed that the amino acid sequences of the VP1 protein have been highly conserved over more than 40 years in the major epidemic genotype GI.1 but not in GI.2. Structural modeling showed that even the VP1 P2 subdomain, which is arranged on the outermost shell of the virion and presumably exposed to anti-SaV antibodies, remained highly homogeneous in GI.1 but not in GI.2. These results suggest strong evolutionary constraints against amino acid changes in the P2 subdomain of the SaV GI.1 capsid and illustrate a hitherto unappreciated mechanism, i.e., preservation of the VP1 P2 subdomain, involved in SaV survival. Our findings could have important implications for the development of an anti-SaV vaccine.


Assuntos
Sapovirus , Vacinas , Criança , Humanos , Sapovirus/genética , Proteínas do Capsídeo/genética , Filogenia , Aminoácidos/genética , Genótipo , Fezes
2.
J Virol ; 96(9): e0029822, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35435722

RESUMO

Sapovirus (SaV) is a member of the Caliciviridae family, which causes acute gastroenteritis in humans and animals. Human sapoviruses (HuSaVs) are genetically and antigenically diverse, but the lack of a viral replication system and structural information has hampered the development of vaccines and therapeutics. Here, we successfully produced a self-assembled virus-like particle (VLP) from the HuSaV GI.6 VP1 protein, and the first atomic structure was determined using single-particle cryo-electron microscopy (cryo-EM) at a 2.9-Å resolution. The atomic model of the VP1 protein revealed a unique capsid protein conformation in caliciviruses. All N-terminal arms in the A, B, and C subunits interacted with adjacent shell domains after extending through their subunits. The roof of the arched VP1 dimer was formed between the P2 subdomains by the interconnected ß strands and loops, and its buried surface was minimized compared to those of other caliciviruses. Four hypervariable regions that are potentially involved in the antigenic diversity of SaV formed extensive clusters on top of the P domain. Potential receptor binding regions implied by tissue culture mutants of porcine SaV were also located near these hypervariable clusters. Conserved sequence motifs of the VP1 protein, "PPG" and "GWS," may stabilize the inner capsid shell and the outer protruding domain, respectively. These findings will provide the structural basis for the medical treatment of HuSaV infections and facilitate the development of vaccines, antivirals, and diagnostic systems. IMPORTANCE SaV and norovirus, belonging to the Caliciviridae family, are common causes of acute gastroenteritis in humans and animals. SaV and norovirus infections are public health problems in all age groups, which occur explosively and sporadically worldwide. HuSaV is genetically and antigenically diverse and is currently classified into 4 genogroups consisting of 18 genotypes based on the sequence similarity of the VP1 proteins. Despite these detailed genetic analyses, the lack of structural information on viral capsids has become a problem for the development of vaccines or antiviral drugs. The 2.9-Å atomic model of the HuSaV GI.6 VLP presented here not only revealed the location of the amino acid residues involved in immune responses and potential receptor binding sites but also provided essential information for the design of stable constructs needed for the development of vaccines and antivirals.


Assuntos
Proteínas do Capsídeo , Capsídeo , Sapovirus , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Conformação Proteica , Sapovirus/ultraestrutura , Suínos
3.
Proc Natl Acad Sci U S A ; 117(50): 32078-32085, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257564

RESUMO

Human sapoviruses (HuSaVs) cause acute gastroenteritis similar to human noroviruses. Although HuSaVs were discovered four decades ago, no HuSaV has been grown in vitro, which has significantly impeded the understanding of viral biology and the development of antiviral strategies. In this study, we identified two susceptible human cell lines, that originated from testis and duodenum, that support HuSaV replication and found that replication requires bile acids. HuSaVs replicated more efficiently in the duodenum cell line, and viral RNA levels increased up to ∼6 log10-fold. We also detected double-stranded RNA, viral nonstructural and structural proteins in the cell cultures, and intact HuSaV particles. We confirmed the infectivity of progeny viruses released into the cell culture supernatants by passaging. These results indicate the successful growth of HuSaVs in vitro. Additionally, we determined the minimum infectious dose and tested the sensitivities of HuSaV GI.1 and GII.3 to heat and ultraviolet treatments. This system is inexpensive, scalable, and reproducible in different laboratories, and can be used to investigate mechanisms of HuSaV replication and to evaluate antivirals and/or disinfection methods for HuSaVs.


Assuntos
Ácidos e Sais Biliares/metabolismo , Meios de Cultura/metabolismo , Sapovirus/fisiologia , Cultura de Vírus/métodos , Replicação Viral , Infecções por Caliciviridae/terapia , Infecções por Caliciviridae/virologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Células Epiteliais , Fezes/virologia , Gastroenterite/terapia , Gastroenterite/virologia , Humanos , Sapovirus/isolamento & purificação
4.
J Biol Chem ; 297(4): 101225, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562449

RESUMO

The norovirus genome consists of a single positive-stranded RNA. The mechanism by which this single-stranded RNA genome is replicated is not well understood. To reveal the mechanism underlying the initiation of the norovirus genomic RNA synthesis by its RNA-dependent RNA polymerase (RdRp), we used an in vitro assay to detect the complementary RNA synthesis activity. Results showed that the purified recombinant RdRp was able to synthesize the complementary positive-sense RNA from a 100-nt template corresponding to the 3'-end of the viral antisense genome sequence, but that the RdRp could not synthesize the antisense genomic RNA from the template corresponding to the 5'-end of the positive-sense genome sequence. We also predicted that the 31 nt region at the 3'-end of the RNA antisense template forms a stem-loop structure. Deletion of this sequence resulted in the loss of complementary RNA synthesis by the RdRp, and connection of the 31 nt to the 3'-end of the inactive positive-sense RNA template resulted in the gain of complementary RNA synthesis by the RdRp. Similarly, an electrophoretic mobility shift assay further revealed that the RdRp bound to the antisense RNA specifically, but was dependent on the 31 nt at the 3'-end. Therefore, based on this observation and further deletion and mutation analyses, we concluded that the predicted stem-loop structure in the 31 nt end and the region close to the antisense viral genomic stem sequences are both important for initiating the positive-sense human norovirus genomic RNA synthesis by its RdRp.


Assuntos
Genoma Viral , Proteínas de Neoplasias/química , Norovirus/química , Conformação de Ácido Nucleico , RNA Antissenso/química , RNA Viral/química , RNA Polimerase Dependente de RNA/química , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Norovirus/genética , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
5.
Arch Virol ; 166(6): 1671-1680, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33839921

RESUMO

Mammalian orthoreoviruses (MRVs) have been identified in various mammalian species, including humans, bats, and pigs. However, isolation and complete genome sequences of MRVs from wild boars have not yet been reported. In this study, we isolated, sequenced, and analyzed an MRV from a free-living wild boar in Japan using the porcine-sapelovirus-resistant cell line N1380. Complete and empty virus particles were obtained from the N1380 cell culture supernatants, and complete genome sequences were obtained from complete virus particles. Sequence analysis revealed that the isolated MRV, named TY-14, could be classified as MRV3 and had a close genetic relationship to an MRV2 isolate from a lion in a Japanese zoo (L2, L3, and M3 genes) and a human MRV2 isolate from Japan (S2 gene). Phylogenetic analysis showed that TY-14 clustered only with bat MRVs in the M1 phylogenetic tree but formed a cluster with several animal MRVs in the M2 and S3 phylogenetic trees and branched independently in the L1, S1, and S4 phylogenetic trees, suggesting a genetic relationship to viruses of unknown origin. Recombination events were identified in the M2 gene. These results suggest that TY-14 was generated by reassortment and recombination events involving MRVs circulating in Japan, viruses from bats, and other viruses of unknown origin.


Assuntos
Fezes/virologia , Orthoreovirus/genética , Orthoreovirus/isolamento & purificação , Infecções por Reoviridae/veterinária , Sus scrofa/virologia , Animais , Linhagem Celular , Japão , Orthoreovirus/classificação , Vírus Reordenados/genética , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/virologia , Suínos
6.
J Formos Med Assoc ; 120(8): 1591-1601, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33323325

RESUMO

BACKGROUND/PURPOSE: Sapoviruses (SaVs) become important pathogens causing both sporadic and outbreaks of acute gastroenteritis (AGE) after rotavirus vaccination era worldwide. SaVs were included in AGE screening items when norovirus and rotavirus were negative in Taiwan CDC since 2008. However, no complete SaV genome sequence of any genotype detected in Taiwan was determined. This study aimed to investigate SaVs infection and complete genome sequences detected in Taiwan. METHODS: This prospective survey, SaVs samples with untyped or weak PCR result were selected for testing the new design qRT-PCR assay from AGE hospitalized children during 2008-2011, 2016-2017 and AGE outbreak in 2012-2014. Those were genetically characterized using long RT-PCR with different primer combinations as well as primer independent deep sequencing and with 5' RACE and 3' terminal region targeting RT-PCR. RESULTS: Overall, 14 SaV-AGE hospitalized children and 4 SaV-AGE outbreaks were enrolled in this study. In addition to the AGE symptoms, 6 children also showed URI symptoms (cough, pharyngitis, rhinorrhea and nasal congestion). The detected 19 SaVs were classified as eight genotypes (GI.1, GI.2, GI.3, GII.2, GII.3, GII.5, GII.8, and GIV.1) and the complete genome sequence of representative strain for each genotype were determined except GI.3. The GII.3 was the most major genotype following GI.1 and GIV.1. CONCLUSION: Our result confirmed that SaV is one of the pathogens detected from Taiwanese AGE patients. Multiple SaV genotype strains would associate with AGE as similar to those detected in different countries/areas. The whole genome of SaV strains detected including rarely reported GII.8 was firstly determined.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Sapovirus , Infecções por Caliciviridae/epidemiologia , Criança , Criança Hospitalizada , Surtos de Doenças , Fezes , Gastroenterite/epidemiologia , Genótipo , Humanos , Filogenia , Estudos Prospectivos , Sapovirus/genética , Taiwan/epidemiologia
7.
J Gen Virol ; 101(8): 840-852, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32553066

RESUMO

The genetic diversity of enterovirus G (EV-G) was investigated in the wild-boar population in Japan. EV-G-specific reverse transcription PCR demonstrated 30 (37.5 %) positives out of 80 faecal samples. Of these, viral protein 1 (VP1) fragments of 20 samples were classified into G1 (3 samples), G4 (1 sample), G6 (2 samples), G8 (4 samples), G11 (1 sample), G12 (7 samples), G14 (1 sample) and G17 (1 sample), among which 11 samples had a papain-like cysteine protease (PL-CP) sequence, believed to be the first discoveries in G1 (2 samples) or G17 (1 sample) wild-boar EV-Gs, and in G8 (2 samples) or G12 (6 samples) EV-Gs from any animals. Sequences of the non-structural protein regions were similar among EV-Gs possessing the PL-CP sequence (PL-CP EV-Gs) regardless of genotype or origin, suggesting the existence of a common ancestor for these strains. Interestingly, for the two G8 and two G12 samples, the genome sequences contained two versions, with or without the PL-CP sequence, together with the homologous 2C/PL-CP and PL-CP/3A junction sequences, which may explain how the recombination and deletion of the PL-CP sequences occured in the PL-CP EV-G genomes. These findings shed light on the genetic plasticity and evolution of EV-G.


Assuntos
Proteínas do Capsídeo/genética , Cisteína Proteases/genética , Infecções por Enterovirus/virologia , Fezes/virologia , Papaína/genética , Sus scrofa/virologia , Animais , Enterovirus Suínos , Variação Genética/genética , Genoma Viral/genética , Genótipo , Japão , Filogenia , Recombinação Genética/genética , Suínos , Doenças dos Suínos/virologia
8.
Arch Virol ; 165(10): 2335-2340, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32719956

RESUMO

Sapoviruses are increasingly being recognized as pathogens associated with gastroenteritis in humans. Human sapoviruses are currently assigned to 18 genotypes (GI.1-7, GII.1-8, GIV.1, and GV.1-2) based on the sequence of the region encoding the major structural protein. In this study, we evaluated 11 polymerase chain reaction (PCR) assays using published and newly designed/modified primers and showed that four PCR assays with different primer combinations amplified all of the tested human sapovirus genotypes using either synthetic DNA or cDNA prepared from human sapovirus-positive fecal specimens. These assays can be used as improved broadly reactive screening tests or as tools for molecular characterization of human sapoviruses.


Assuntos
Infecções por Caliciviridae/virologia , Primers do DNA/química , Gastroenterite/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sapovirus/genética , Proteínas Estruturais Virais/genética , Sequência de Bases , Infecções por Caliciviridae/diagnóstico , Primers do DNA/genética , Fezes/virologia , Gastroenterite/diagnóstico , Expressão Gênica , Genótipo , Humanos , Tipagem Molecular/métodos , Filogenia , Sapovirus/classificação , Sapovirus/isolamento & purificação , Alinhamento de Sequência
9.
Arch Virol ; 165(12): 2909-2914, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32951133

RESUMO

Two and three genotypes of enterovirus G (EV-G) carrying a papain-like cysteine protease (PL-CP) sequence were detected on two pig farms and classified into genotypes G1 and G10, and G1, G8, and G17, respectively, based on VP1 sequences. A G10 EV-G virus bearing a PL-CP sequence was detected for the first time. Phylogenetic analysis of the P2 and P3 regions grouped the viruses by farm with high sequence similarity. Furthermore, clear recombination break points were detected in the 2A region, suggesting that PL-CP EV-G-containing strains gained sequence diversity through recombination events among the multiple circulating EV-G genotypes on the farms.


Assuntos
Cisteína Proteases/genética , Infecções por Enterovirus/veterinária , Enterovirus Suínos/genética , Genoma Viral , Recombinação Genética , Animais , Proteínas do Capsídeo/genética , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Enterovirus Suínos/enzimologia , Fezes/virologia , Variação Genética , Genótipo , Japão , Filogenia , Análise de Sequência de DNA , Sus scrofa , Proteínas Virais/genética
10.
Arch Virol ; 165(2): 471-477, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863265

RESUMO

We sequenced the complete genome of a porcine torovirus (PToV) strain from Japan for the first time. Whole-genome analysis revealed that this strain (Iba/2018) has a mosaic sequence composed of at least three genome backgrounds, related to US, Chinese and German PToV strains. Clear recombination breakpoints were detected in the M and HE coding regions. A similarity plot and structural analysis demonstrated that the HE coding region exhibits the highest diversity, and the most sequence variation was found in the lectin domain. PToVs were divided into two lineages in the HE region, whereas clear lineages were not found in other regions.


Assuntos
Fezes/virologia , Genoma Viral , Infecções por Torovirus/veterinária , Torovirus/genética , Torovirus/isolamento & purificação , Sequenciamento Completo do Genoma , Animais , Biologia Computacional , Evolução Molecular , Humanos , Japão , Recombinação Genética , Suínos , Infecções por Torovirus/virologia
11.
J Med Virol ; 91(3): 370-377, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30320885

RESUMO

Sapoviruses are associated with acute gastroenteritis. Human sapoviruses are classified into four distinct genogroups (GI, GII, GIV, and GV) based on their capsid gene sequences. A TaqMan probe-based real-time reverse transcription-polymerase chain reaction (RT-PCR) assay that detects the representative strains of these four genogroups is widely used for screening fecal specimens, shellfish, and environmental water samples. However, since the development of this test, more genetically diverse sapovirus strains have been reported, which are not detectable by the previously established assays. In this study, we report the development of a broader-range sapovirus real-time RT-PCR assay. The assay can detect 2.5 × 107 and 2.5 × 10 1 copies of sapovirus and therefore is as sensitive as the previous test. Analysis using clinical stool specimens or synthetic DNA revealed that the new system detected strains representative of all the 18 human sapovirus genotypes: GI.1-7, GII.1-8, GIV.1, and GV.1, 2. No cross-reactivity was observed against other representative common enteric viruses (norovirus, rotavirus, astrovirus, and adenovirus). This new assay will be useful as an improved, broadly reactive, and specific screening tool for human sapoviruses.


Assuntos
RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Sapovirus/genética , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/virologia , Primers do DNA/genética , Sondas de DNA , Fezes/virologia , Variação Genética , Genótipo , Humanos , Sapovirus/classificação , Sensibilidade e Especificidade
12.
Arch Virol ; 164(8): 2147-2151, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31111261

RESUMO

Posaviruses and posa-like viruses are unclassified viruses with sequence similarity to viruses of the order Picornavirales. They have been reported in various vertebrates and invertebrates. We identified 11 posavirus-like sequences in porcine feces and performed phylogenic analysis. Previously reported Japanese posaviruses and those identified in this study clustered with posavirus 1, 4, and 7 and husavirus 1, while five viruses branched into three independent lineages, tentatively named posavirus 10, 11, and 12. Interestingly, posaviruses, except for posavirus 8 and 9, husaviruses, and rasaviruses, formed a cluster consisting of viruses only from pigs, humans, and rats, while posavirus 8 and 9, fisavirus, and basaviruses clustered with posa-like viruses from invertebrates.


Assuntos
Fezes/virologia , Invertebrados/virologia , Vertebrados/virologia , Vírus/classificação , Vírus/genética , Animais , Análise por Conglomerados , Genoma Viral/genética , Humanos , Japão , Metagenômica/métodos , Filogenia , Vírus de RNA/genética , Ratos , Análise de Sequência de DNA/métodos , Suínos
13.
Biologicals ; 52: 12-17, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29475730

RESUMO

Slc:Wistar rats have been the only strain used in Japan for purpose of evaluating a national reference vaccine for the Sabin-derived inactivated polio vaccine (sIPV) and the immunogenicity of sIPV-containing products. However, following the discovery that the Slc:Wistar strain was genetically related to the Fischer 344 strain, other "real" Wistar strains, such as Crlj:WI, that are available worldwide were tested in terms of their usefulness in evaluating the immunogenicity of the past and current lots of a national reference vaccine. The response of the Crlj:WI rats against the serotype 1 of sIPV was comparable to that of the Slc:Wistar rats, while the Crlj:WI rats exhibited a higher level of response against the serotypes 2 and 3. The immunogenic potency units of a national reference vaccine determined using the Slc:Wistar rats were reproduced on tests using the Crlj:WI rats. These results indicate that a titer of the neutralizing antibody obtained in response to a given dose of sIPV cannot be directly compared between these two rat strains, but that, more importantly, the potency units are almost equivalent for the two rat strains.


Assuntos
Imunogenicidade da Vacina , Vacina Antipólio Oral/imunologia , Sorogrupo , Animais , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Especificidade da Espécie
14.
J Virol ; 90(3): 1345-58, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581980

RESUMO

UNLABELLED: The porcine sapovirus (SaV) (PoSaV) Cowden strain is one of only a few culturable enteric caliciviruses. Compared to the wild-type (WT) PoSaV Cowden strain, tissue culture-adapted (TC) PoSaV has two conserved amino acid substitutions in the RNA-dependent RNA polymerase (RdRp) and six in the capsid protein (VP1). By using the reverse-genetics system, we identified that 4 amino acid substitutions in VP1 (residues 178, 289, 324, and 328), but not the substitutions in the RdRp region, were critical for the cell culture adaptation of the PoSaV Cowden strain. The other two substitutions in VP1 (residues 291 and 295) reduced virus replication in vitro. Three-dimensional (3D) structural analysis of VP1 showed that residue 178 was located near the dimer-dimer interface, which may affect VP1 assembly and oligomerization; residues 289, 291, 324, and 328 were located at protruding subdomain 2 (P2) of VP1, which may influence virus binding to cellular receptors; and residue 295 was located at the interface of two monomeric VP1 proteins, which may influence VP1 dimerization. Although reversion of the mutation at residue 291 or 295 from that of the TC strain to that of the WT reduced virus replication in vitro, it enhanced virus replication in vivo, and the revertants induced higher-level serum and mucosal antibody responses than those induced by the TC PoSaV Cowden strain. Our findings reveal the molecular basis for PoSaV adaptation to cell culture. These findings may provide new, critical information for the cell culture adaptation of other PoSaV strains and human SaVs or noroviruses. IMPORTANCE: The tissue culture-adapted porcine sapovirus Cowden strain is one of only a few culturable enteric caliciviruses. We discovered that 4 amino acid substitutions in VP1 (residues 178, 289, 324, and 328) were critical for its adaptation to LLC-PK cells. Two substitutions in VP1 (residues 291 and 295) reduced virus replication in vitro but enhanced virus replication and induced higher-level serum and mucosal antibody responses in gnotobiotic pigs than those induced by the tissue culture-adapted strain. Structural modeling analysis of VP1 suggested that residue 178 may affect VP1 assembly and oligomerization; residues 289, 291, 324, and 328 may influence virus binding to cellular receptors; and residue 295 may influence VP1 dimerization. Our findings will provide new information for the cell culture adaptation of other sapoviruses and possibly noroviruses.


Assuntos
Adaptação Biológica , Sapovirus/crescimento & desenvolvimento , Inoculações Seriadas , Cultura de Vírus , Animais , Linhagem Celular , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Conformação Proteica , RNA Polimerase Dependente de RNA/genética , Genética Reversa , Sapovirus/genética , Suínos , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética
15.
Virus Genes ; 53(6): 848-855, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28643180

RESUMO

Sapoviruses (SaVs) are enteric viruses and have been detected in various mammals. They are divided into multiple genogroups and genotypes based on the entire major capsid protein (VP1) encoding region sequences. In this study, we determined the first complete genome sequences of two genogroup V, genotype 3 (GV.3) SaV strains detected from swine fecal samples, in combination with Illumina MiSeq sequencing of the libraries prepared from viral RNA and PCR products. The lengths of the viral genome (7494 nucleotides [nt] excluding polyA tail) and short 5'-untranslated region (14 nt) as well as two predicted open reading frames are similar to those of other SaVs. The amino acid differences between the two porcine SaVs are most frequent in the central region of the VP1-encoding region. A stem-loop structure which was predicted in the first 41 nt of the 5'-terminal region of GV.3 SaVs and the other available complete genome sequences of SaVs may have a critical role in viral genome replication. Our study provides complete genome sequences of rarely reported GV.3 SaV strains and highlights the common 5'-terminal genomic feature of SaVs detected from different mammalian species.


Assuntos
Genoma Viral/genética , Sapovirus/genética , Regiões 5' não Traduzidas/genética , Animais , Sequência de Bases , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Gastroenterite/virologia , Genômica/métodos , Genótipo , Fases de Leitura Aberta/genética , Filogenia , RNA Viral/genética , Suínos , Doenças dos Suínos/virologia , Sequenciamento Completo do Genoma/métodos
16.
Virus Genes ; 53(4): 593-602, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28484931

RESUMO

Porcine kobuviruses (PoKoVs) are ubiquitously distributed in pig populations worldwide and are thought to be enteric viruses in swine. Although PoKoVs have been detected in pigs in Japan, no complete genome data for Japanese PoKoVs are available. In the present study, 24 nearly complete or complete sequences of the PoKoV genome obtained from 10 diarrheic feces and 14 non-diarrheic feces of Japanese pigs were analyzed using a metagenomics approach. Japanese PoKoVs shared 85.2-100% identity with the complete coding nucleotide (nt) sequences and the closest relationship of 85.1-98.3% with PoKoVs from other countries. Twenty of 24 Japanese PoKoVs carried a deletion of 90 nt in the 2B coding region. Phylogenetic tree analyses revealed that PoKoVs were not grouped according to their geographical region of origin and the phylogenetic trees of the L, P1, P2, and P3 genetic regions showed topologies different from each other. Similarity plot analysis using strains from a single farm revealed partially different similarity patterns among strains from identical farm origins, suggesting that recombination events had occurred. These results indicate that various PoKoV strains are prevalent and not restricted geographically on pig farms worldwide and the coexistence of multiple strains leads to recombination events of PoKoVs and contributes to the genetic diversity and evolution of PoKoVs.


Assuntos
Diarreia/veterinária , Fezes/virologia , Genoma Viral , Kobuvirus/genética , Kobuvirus/isolamento & purificação , Infecções por Picornaviridae/veterinária , Doenças dos Suínos/virologia , Animais , Diarreia/virologia , Variação Genética , Japão , Kobuvirus/classificação , Filogenia , Infecções por Picornaviridae/virologia , Suínos
17.
Proc Natl Acad Sci U S A ; 111(38): E4043-52, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25192933

RESUMO

Human norovirus (HuNoV) is the leading cause of gastroenteritis worldwide. HuNoV replication studies have been hampered by the inability to grow the virus in cultured cells. The HuNoV genome is a positive-sense single-stranded RNA (ssRNA) molecule with three open reading frames (ORFs). We established a reverse genetics system driven by a mammalian promoter that functions without helper virus. The complete genome of the HuNoV genogroup II.3 U201 strain was cloned downstream of an elongation factor-1α (EF-1α) mammalian promoter. Cells transfected with plasmid containing the full-length genome (pHuNoVU201F) expressed the ORF1 polyprotein, which was cleaved by the viral protease to produce the mature nonstructural viral proteins, and the capsid proteins. Progeny virus produced from the transfected cells contained the complete NoV genomic RNA (VP1, VP2, and VPg) and exhibited the same density in isopycnic cesium chloride gradients as native infectious NoV particles from a patient's stool. This system also was applied to drive murine NoV RNA replication and produced infectious progeny virions. A GFP reporter construct containing the GFP gene in ORF1 produced complete virions that contain VPg-linked RNA. RNA from virions containing the encapsidated GFP-genomic RNA was successfully transfected back into cells producing fluorescent puncta, indicating that the encapsidated RNA is replication-competent. The EF-1α mammalian promoter expression system provides the first reverse genetics system, to our knowledge, generalizable for human and animal NoVs that does not require a helper virus. Establishing a complete reverse genetics system expressed from cDNA for HuNoVs now allows the manipulation of the viral genome and production of reporter virions.


Assuntos
Genes Reporter , Genoma Viral , Norovirus , Plasmídeos , RNA Viral , Proteínas Virais , Animais , Células COS , Chlorocebus aethiops , DNA Complementar/genética , DNA Complementar/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Norovirus/genética , Norovirus/metabolismo , Fases de Leitura Aberta/fisiologia , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA Viral/biossíntese , RNA Viral/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética , Vírion/genética , Vírion/metabolismo
18.
Clin Microbiol Rev ; 28(1): 32-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25567221

RESUMO

Sapoviruses cause acute gastroenteritis in humans and animals. They belong to the genus Sapovirus within the family Caliciviridae. They infect and cause disease in humans of all ages, in both sporadic cases and outbreaks. The clinical symptoms of sapovirus gastroenteritis are indistinguishable from those caused by noroviruses, so laboratory diagnosis is essential to identify the pathogen. Sapoviruses are highly diverse genetically and antigenically. Currently, reverse transcription-PCR (RT-PCR) assays are widely used for sapovirus detection from clinical specimens due to their high sensitivity and broad reactivity as well as the lack of sensitive assays for antigen detection or cell culture systems for the detection of infectious viruses. Sapoviruses were first discovered in 1976 by electron microscopy in diarrheic samples of humans. To date, sapoviruses have also been detected from several animals: pigs, mink, dogs, sea lions, and bats. In this review, we focus on genomic and antigenic features, molecular typing/classification, detection methods, and clinical and epidemiological profiles of human sapoviruses.


Assuntos
Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/virologia , Sapovirus/fisiologia , Animais , Antígenos Virais/metabolismo , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/patologia , Genoma Viral/genética , Humanos , Tipagem Molecular , Sapovirus/classificação , Sapovirus/genética
19.
J Virol ; 89(6): 3332-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589635

RESUMO

UNLABELLED: Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are economically important swine enteropathogenic coronaviruses. These two viruses belong to two distinct species of the Alphacoronavirus genus within Coronaviridae and induce similar clinical signs and pathological lesions in newborn piglets, but they are presumed to be antigenically distinct. In the present study, two-way antigenic cross-reactivity examinations between the prototype PEDV CV777 strain, three distinct U.S. PEDV strains (the original highly virulent PC22A, S indel Iowa106, and S 197del PC177), and two representative U.S. TGEV strains (Miller and Purdue) were conducted by cell culture immunofluorescent (CCIF) and viral neutralization (VN) assays. None of the pig TGEV antisera neutralized PEDV and vice versa. One-way cross-reactions were observed by CCIF between TGEV Miller hyperimmune pig antisera and all PEDV strains. Enzyme-linked immunosorbent assays, immunoblotting using monoclonal antibodies and Escherichia coli-expressed recombinant PEDV and TGEV nucleocapsid (N) proteins, and sequence analysis suggested at least one epitope on the N-terminal region of PEDV/TGEV N protein that contributed to this cross-reactivity. Biologically, PEDV strain CV777 induced greater cell fusion in Vero cells than did U.S. PEDV strains. Consistent with the reported genetic differences, the results of CCIF and VN assays also revealed higher antigenic variation between PEDV CV777 and U.S. strains. IMPORTANCE: Evidence of antigenic cross-reactivity between porcine enteric coronaviruses, PEDV and TGEV, in CCIF assays supports the idea that these two species are evolutionarily related, but they are distinct species defined by VN assays. Identification of PEDV- or TGEV-specific antigenic regions allows the development of more specific immunoassays for each virus. Antigenic and biologic variations between the prototype and current PEDV strains could explain, at least partially, the recurrence of PEDV epidemics. Information on the conserved antigenicity among PEDV strains is important for the development of PEDV vaccines to protect swine from current highly virulent PEDV infections.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/imunologia , Vírus da Gastroenterite Transmissível/imunologia , Sequência de Aminoácidos , Animais , Variação Antigênica , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Reações Cruzadas , Gastroenterite Suína Transmissível/imunologia , Gastroenterite Suína Transmissível/virologia , Dados de Sequência Molecular , Vírus da Diarreia Epidêmica Suína/química , Vírus da Diarreia Epidêmica Suína/classificação , Vírus da Diarreia Epidêmica Suína/genética , Alinhamento de Sequência , Suínos , Doenças dos Suínos/virologia , Vírus da Gastroenterite Transmissível/química , Vírus da Gastroenterite Transmissível/classificação , Vírus da Gastroenterite Transmissível/genética
20.
J Med Virol ; 88(7): 1187-93, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26684081

RESUMO

Sapovirus (SaV) is a causative agent of gastroenteritis in humans in both sporadic cases and outbreaks. During the period from January 2005 to August 2014, SaV was detected in 30 (5.9%) of 510 gastroenteritis outbreaks in Osaka City, Japan using real-time RT-PCR. Seasonal distribution of SaV-associated outbreaks revealed an increase during the 2011-2012 season and the highest frequency of outbreaks during the 2012-2013 season. Genotyping analysis based on the capsid region demonstrated that the most common genotype was GI.2 (36.7%), in which the strains were closely related. The comparison of complete capsid gene sequences with 18 GI.2 strains (7 strains in this study and 11 from GenBank) between 1990 and 2013 showed that GI.2 strains were classified into at least three genetic clusters (1990-2000, 2004-2007, and 2008-2013) with chronologically unique amino acid residues and accumulation of mutations in the predicted P domain, suggesting the one of the causes of emergence and spread of GI.2 strains. This study will also be helpful for understanding the evolutionary mechanism of the SaV genome.


Assuntos
Infecções por Caliciviridae/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Epidemias , Gastroenterite/epidemiologia , Gastroenterite/virologia , Sapovirus/genética , Adolescente , Adulto , Idoso , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Criança , Pré-Escolar , Fezes/virologia , Genoma Viral , Genótipo , Humanos , Vigilância Imunológica , Lactente , Recém-Nascido , Japão/epidemiologia , Pessoa de Meia-Idade , Mutação , Filogenia , RNA Viral/genética , Estações do Ano , Análise de Sequência de DNA , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA