Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 19(9): 3228-3241, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35904247

RESUMO

Traditional antibody-drug conjugate (ADC) technology has employed tumor-targeting antibodies to selectively deliver ultrapotent cytotoxins to tumor tissue. While this technology has been highly successful, resulting in the FDA approval of over 10 ADCs, the field continues to struggle with modest efficacy and significant off-target toxicity. Concurrent with the struggles of the ADC field, a new generation of immune-activating therapeutics has arisen, most clearly exemplified by the PD-1/PD-L1 inhibitors that are now part of standard-of-care treatment regimens for a variety of cancers. The success of these immuno-oncology therapeutic agents has prompted the investigation of a variety of new immuno-stimulant approaches, including toll-like receptor (TLR) activators. Herein, we describe the optimization of ADC technology for the selective delivery of a potent series of TLR7 agonists. A series of imidazole[4,5-c]quinoline agonists (as exemplified by compound 1) were shown to selectively agonize the human and mouse TLR7 receptor at low nanomolar concentrations, resulting in the release of IFNα from human peripheral blood mononuclear cells (hPBMCs) and the upregulation of CD86 on antigen-presenting cells. Compound 1 was attached to a deglycosylated (Fc-γ null) HER2-targeting antibody via a cleavable linker, resulting in an ADC (anti-HER2_vc-1) that potently and selectively activated the TLR7 pathway in tumor-associated macrophages via a "bystander" mechanism. We demonstrated that this ADC rapidly released the TLR7 agonist into the media when incubated with HER2+ cells. This release was not observed upon incubation with an isotype control ADC and furthermore was suppressed by co-administration of the naked antibody. In co-culture experiments with HER2+ HCC1954 cells, this ADC induced the activation of the NFκB pathway in mouse macrophages and the release of IFNα from hPBMCs, while a corresponding isotype control ADC did not. Finally, we demonstrated that IP administration of anti-HER2_vc-1 induced complete tumor regression in an HCC1954 xenograft study in SCID beige mice. Unlike related ADC technology that has been reported recently, our technology relies on the passive diffusion of the TLR7 agonist into tumor-associated macrophages rather than Fc-γ-mediated uptake. Based on these observations, we believe that this ADC technology holds significant potential for both oncology and infectious disease applications.


Assuntos
Antineoplásicos , Imunoconjugados , Quinolinas , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Leucócitos Mononucleares , Camundongos , Camundongos SCID , Receptor 7 Toll-Like , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Molecules ; 25(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046009

RESUMO

Surface water is the recipient of pollutants from various sources, including improperly treated wastewater. Comprehensive knowledge of the composition of water is necessary to make it reusable in water-scarce environments. In this work, proton nuclear magnetic resonance (1H-NMR) was combined with multivariate analysis to study the metabolites in four rivers and four wastewater treatment plants releasing treated effluents into the rivers. 1H-NMR chemical shifts of the extracts in CDCl were acquired with Bruker 400. Chemical shifts of 1H-NMR in chlorinated alkanes, amino compounds and fluorinated hydrocarbons were common to samples of wastewater and lower reaches or the rivers. 1H-NMR chemical shifts of carbonyl compounds and alkyl phosphates were restricted to wastewater samples. Chemical shifts of phenolic compounds were associated with treated effluent samples. This study showed that the sources of these metabolites in the rivers were not only from improperly treated effluents but also from runoffs. Multivariate analyses showed that some of the freshwater samples were not of better quality than wastewater and treated effluents. Observations show the need for constant monitoring of rivers and effluent for the safety of the aquatic environment.


Assuntos
Compostos Orgânicos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos , Fosfatos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Rios/química , África do Sul , Eliminação de Resíduos Líquidos/métodos
3.
Bioorg Med Chem Lett ; 29(13): 1572-1575, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31080006

RESUMO

A series of novel, substituted 2-chloro-3-[(thiazol-2-yl)amino]-1,4-naphthoquinones have been prepared and shown to exhibit promising concentration-dependent activity against human SH-SY5Y cells, Plasmodium falciparum, Mycobacterium tuberculosis and P. aeruginosa. Substituent effects on observed bioactivity have been explored; the para-fluorophenyl derivative 3d exhibited activity across the range of the bioassays employed, indicating the potential of the 2-chloro-3-[(4-arylthiazol-2-yl)amino]-1,4-naphthoquinone scaffold in the development of novel, broad spectrum therapeutics.


Assuntos
Naftoquinonas/síntese química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
4.
Molecules ; 23(3)2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510542

RESUMO

Honey is the natural sweet substance produced by honeybee from nectar or honeydew, exhibiting several nutritional and health benefits. It contains a complex mixture of compounds in different proportions, with sugars being the main component. The physicochemical characteristics of ten honeys were evaluated; represented by five, three, and two from South Africa, Slovakia, and Zambia, respectively. The range of values for the pH (3.75-4.38), electrical conductivity (99-659 µS/cm), and moisture content (14.2-17.7%) are within the recommended limits for quality honeys. ¹H-NMR (Nuclear Magnetic Resonance) profiling of the honeys in D2O was determined, and the data were analysed by chemometrics. This method is fast, reproducible, and sample pre-treatment is not necessary. The ¹H-NMR fingerprints of various chemical shift regions showed similarity or dissimilarity across geographical origins that are useful for identification, detection of adulteration, and quality control. The principal component analysis PCA and partial linear square discriminant analysis PLS-DA of the ¹H-NMR profiles successively categorises the honeys into two chemically related groups. The R² values are higher than the corresponding Q² values for all samples, confirming the reliability of the model. Honeys in the same cluster contain similar metabolites and belong to the same botanic or floral origin.


Assuntos
Mel/análise , Açúcares/isolamento & purificação , Água/análise , Animais , Abelhas/fisiologia , Análise Discriminante , Condutividade Elétrica , Mel/classificação , Humanos , Concentração de Íons de Hidrogênio , Análise de Componente Principal , Reprodutibilidade dos Testes , Eslováquia , África do Sul , Açúcares/classificação , Zâmbia
5.
Biomed Opt Express ; 14(6): 2551-2564, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342714

RESUMO

The low pH of the lysosomal compartment often results in sequestration of chemotherapeutic agents that contain positively charged basic functional groups, leading to anti-cancer drug resistance. To visualize drug localization in lysosomes and its influence on lysosomal functions, we synthesize a group of drug-like compounds that contain both a basic functional group and a bisarylbutadiyne (BADY) group as a Raman probe. With quantitative stimulated Raman scattering (SRS) imaging, we validate that the synthesized lysosomotropic (LT) drug analogs show high lysosomal affinity, which can also serve as a photostable lysosome tracker. We find that long-term retention of the LT compounds in lysosomes leads to the increased amount and colocalization of both lipid droplets (LDs) and lysosomes in SKOV3 cells. With hyperspectral SRS imaging, further studies find that the LDs stuck in lysosomes are more saturated than the LDs staying out of the lysosomes, indicating impaired lysosomal lipid metabolism by the LT compounds. These results demonstrate that SRS imaging of the alkyne-based probes is a promising approach to characterizing the lysosomal sequestration of drugs and its influence on cell functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA