Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7965): 566-574, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258669

RESUMO

The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Axônios/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurônios/fisiologia
2.
Br J Psychiatry ; 222(3): 100-111, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700346

RESUMO

BACKGROUND: Reward processing has been proposed to underpin the atypical social feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social reward processing in ASD. AIMS: Utilising a large sample, we aimed to assess reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD. METHOD: Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.6 years of age) and 181 typically developing participants (7.6-30.8 years of age). RESULTS: Across social and monetary reward anticipation, whole-brain analyses showed hypoactivation of the right ventral striatum in participants with ASD compared with typically developing participants. Further, region of interest analysis across both reward types yielded ASD-related hypoactivation in both the left and right ventral striatum. Across delivery of social and monetary reward, hyperactivation of the ventral striatum in individuals with ASD did not survive correction for multiple comparisons. Dimensional analyses of autism and attention-deficit hyperactivity disorder (ADHD) scores were not significant. In categorical analyses, post hoc comparisons showed that ASD effects were most pronounced in participants with ASD without co-occurring ADHD. CONCLUSIONS: Our results do not support current theories linking atypical social interaction in ASD to specific alterations in social reward processing. Instead, they point towards a generalised hypoactivity of ventral striatum in ASD during anticipation of both social and monetary rewards. We suggest this indicates attenuated reward seeking in ASD independent of social content and that elevated ADHD symptoms may attenuate altered reward seeking in ASD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Recompensa , Imageamento por Ressonância Magnética/métodos
3.
Psychol Med ; 49(13): 2247-2255, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30362446

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD) are neurodevelopmental disorders with considerable overlap in terms of their defining symptoms of compulsivity/repetitive behaviour. Little is known about the extent to which ASD and OCD have common versus distinct neural correlates of compulsivity. Previous research points to potentially common dysfunction in frontostriatal connectivity, but direct comparisons in one study are lacking. Here, we assessed frontostriatal resting-state functional connectivity in youth with ASD or OCD, and healthy controls. In addition, we applied a cross-disorder approach to examine whether repetitive behaviour across ASD and OCD has common neural substrates. METHODS: A sample of 78 children and adolescents aged 8-16 years was used (ASD n = 24; OCD n = 25; healthy controls n = 29), originating from the multicentre study COMPULS. We tested whether diagnostic group, repetitive behaviour (measured with the Repetitive Behavior Scale-Revised) or their interaction was associated with resting-state functional connectivity of striatal seed regions. RESULTS: No diagnosis-specific differences were detected. The cross-disorder analysis, on the other hand, showed that increased functional connectivity between the left nucleus accumbens (NAcc) and a cluster in the right premotor cortex/middle frontal gyrus was related to more severe symptoms of repetitive behaviour. CONCLUSIONS: We demonstrate the fruitfulness of applying a cross-disorder approach to investigate the neural underpinnings of compulsivity/repetitive behaviour, by revealing a shared alteration in functional connectivity in ASD and OCD. We argue that this alteration might reflect aberrant reward or motivational processing of the NAcc with excessive connectivity to the premotor cortex implementing learned action patterns.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/fisiopatologia , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Mapeamento Encefálico , Criança , Europa (Continente) , Feminino , Humanos , Masculino , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem
4.
Neuroimage ; 161: 134-148, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782681

RESUMO

The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach. This spatial model constitutes an elegant alternative to voxel-based approaches in neuroimaging studies; not only are their atoms biologically informed, they are also adaptive to high resolutions, represent high dimensions efficiently, and capture long-range spatial dependencies, which are important and challenging objectives for neuroimaging data.


Assuntos
Corpo Estriado/diagnóstico por imagem , Dopamina/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Doença de Parkinson/diagnóstico por imagem , Análise Espacial , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Idoso , Teorema de Bayes , Corpo Estriado/metabolismo , Feminino , Neuroimagem Funcional/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Tropanos
5.
J Child Psychol Psychiatry ; 57(6): 697-705, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26871610

RESUMO

BACKGROUND: Task-based and resting-state functional Magnetic Resonance Imaging (fMRI) studies report attention-deficit/hyperactivity disorder (ADHD)-related alterations in brain regions implicated in cortico-striatal networks. We assessed whether ADHD is associated with changes in the brain's global cortico-striatal functional architecture, or whether ADHD-related alterations are limited to local, intrastriatal functional connections. METHODS: We included a cohort of adolescents with ADHD (N = 181) and healthy controls (N = 140) and assessed functional connectivity of nucleus accumbens, caudate nucleus, anterior putamen, and posterior putamen. To assess global cortico-striatal functional architecture we computed whole-brain functional connectivity by including all regions of interest in one multivariate analysis. We assessed local striatal functional connectivity using partial correlations between the time series of the striatal regions. RESULTS: Diagnostic status did not influence global cortico-striatal functional architecture. However, compared to controls, participants with ADHD exhibited significantly increased local functional connectivity between anterior and posterior putamen (p = .0003; ADHD: z = .30, controls: z = .24). Results were not affected by medication use or comorbid oppositional defiant disorder and conduct disorder. CONCLUSIONS: Our results do not support hypotheses that ADHD is associated with alterations in cortico-striatal networks, but suggest changes in local striatal functional connectivity. We interpret our findings as aberrant development of local functional connectivity of the putamen, potentially leading to decreased functional segregation between anterior and posterior putamen in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Rede Nervosa/fisiopatologia , Adolescente , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
6.
Eur Child Adolesc Psychiatry ; 22(12): 757-70, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24297675

RESUMO

Concurring with the shift from linking functions to specific brain areas towards studying network integration, resting state FMRI (R-FMRI) has become an important tool for delineating the functional network architecture of the brain. Fueled by straightforward data collection, R-FMRI analysis methods as well as studies reporting on R-FMRI have flourished, and already impact research on child- and adolescent psychiatric disorders. Here, we review R-FMRI analysis techniques and outline current methodological debates. Furthermore, we provide an overview of the main R-FMRI findings related to child- and adolescent psychiatric disorders. R-FMRI research has contributed significantly to our understanding of brain function in child and adolescent psychiatry: existing hypotheses based on task-based FMRI were confirmed and new insights into the brain's functional architecture of disorders were established. However, results were not always consistent. While resting state networks are robust and reproducible, neuroimaging research in psychiatric disorders is especially complicated by tremendous phenotypic heterogeneity. It is imperative that we overcome this heterogeneity when integrating neuroimaging into the diagnostic and treatment process. As R-FMRI allows investigating the richness of the human functional connectome and can be easily collected and aggregated into large-scale datasets, it is clear that R-FMRI can be a powerful tool in our quest to understand psychiatric pathology.


Assuntos
Encéfalo/patologia , Psiquiatria Infantil , Neuroimagem Funcional/métodos , Imageamento por Ressonância Magnética/métodos , Transtornos Mentais/diagnóstico , Adolescente , Adulto , Humanos
7.
Biol Psychiatry ; 94(1): 29-39, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36925414

RESUMO

BACKGROUND: Neuroimaging studies of functional connectivity (FC) in autism have been hampered by small sample sizes and inconsistent findings with regard to whether connectivity is increased or decreased in individuals with autism, whether these alterations affect focal systems or reflect a brain-wide pattern, and whether these are age and/or sex dependent. METHODS: The study included resting-state functional magnetic resonance imaging and clinical data from the EU-AIMS LEAP (European Autism Interventions Longitudinal European Autism Project) and the ABIDE (Autism Brain Imaging Data Exchange) 1 and 2 initiatives of 1824 (796 with autism) participants with an age range of 5-58 years. Between-group differences in FC were assessed, and associations between FC and clinical symptom ratings were investigated through canonical correlation analysis. RESULTS: Autism was associated with a brainwide pattern of hypo- and hyperconnectivity. Hypoconnectivity predominantly affected sensory and higher-order attentional networks and correlated with social impairments, restrictive and repetitive behavior, and sensory processing. Hyperconnectivity was observed primarily between the default mode network and the rest of the brain and between cortical and subcortical systems. This pattern was strongly associated with social impairments and sensory processing. Interactions between diagnosis and age or sex were not statistically significant. CONCLUSIONS: The FC alterations observed, which primarily involve hypoconnectivity of primary sensory and attention networks and hyperconnectivity of the default mode network and subcortex with the rest of the brain, do not appear to be age or sex dependent and correlate with clinical dimensions of social difficulties, restrictive and repetitive behaviors, and alterations in sensory processing. These findings suggest that the observed connectivity alterations are stable, trait-like features of autism that are related to the main symptom domains of the condition.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Conectoma/métodos , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
8.
Transl Psychiatry ; 13(1): 128, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072388

RESUMO

Both psychotic illness and subclinical psychosis-like experiences (PLEs) have been associated with cortico-striatal dysfunction. This work has largely relied on a discrete parcellation of the striatum into distinct functional areas, but recent evidence suggests that the striatum comprises multiple overlapping and smoothly varying gradients (i.e., modes) of functional organization. Here, we investigated two of these functional connectivity modes, previously associated with variations in the topographic patterning of cortico-striatal connectivity (first-order gradient), and dopaminergic innervation of the striatum (second-order gradient), and assessed continuities in striatal function from subclinical to clinical domains. We applied connectopic mapping to resting-state fMRI data to obtain the first-order and second-order striatal connectivity modes in two distinct samples: (1) 56 antipsychotic-free patients (26 females) with first-episode psychosis (FEP) and 27 healthy controls (17 females); and (2) a community-based cohort of 377 healthy individuals (213 females) comprehensively assessed for subclinical PLEs and schizotypy. The first-order "cortico-striatal" and second-order "dopaminergic" connectivity gradients were significantly different in FEP patients compared to controls bilaterally. In the independent sample of healthy individuals, variations in the left first-order "cortico-striatal" connectivity gradient were associated with inter-individual differences in a factor capturing general schizotypy and PLE severity. The presumed cortico-striatal connectivity gradient was implicated in both subclinical and clinical cohorts, suggesting that variations in its organization may represent a neurobiological trait marker across the psychosis continuum. Disruption of the presumed dopaminergic gradient was only noticeable in patients, suggesting that neurotransmitter dysfunction may be more apparent to clinical illness.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Transtorno da Personalidade Esquizotípica , Feminino , Humanos , Transtorno da Personalidade Esquizotípica/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Imageamento por Ressonância Magnética
9.
Transl Psychiatry ; 13(1): 270, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500630

RESUMO

Sensory atypicalities are particularly common in autism spectrum disorders (ASD). Nevertheless, our knowledge about the divergent functioning of the underlying somatosensory region and its association with ASD phenotype features is limited. We applied a data-driven approach to map the fine-grained variations in functional connectivity of the primary somatosensory cortex (S1) to the rest of the brain in 240 autistic and 164 neurotypical individuals from the EU-AIMS LEAP dataset, aged between 7 and 30. We estimated the S1 connection topography ('connectopy') at rest and during the emotional face-matching (Hariri) task, an established measure of emotion reactivity, and accessed its association with a set of clinical and behavioral variables. We first demonstrated that the S1 connectopy is organized along a dorsoventral axis, mapping onto the S1 somatotopic organization. We then found that its spatial characteristics were linked to the individuals' adaptive functioning skills, as measured by the Vineland Adaptive Behavior Scales, across the whole sample. Higher functional differentiation characterized the S1 connectopies of individuals with higher daily life adaptive skills. Notably, we detected significant differences between rest and the Hariri task in the S1 connectopies, as well as their projection maps onto the rest of the brain suggesting a task-modulating effect on S1 due to emotion processing. All in all, variation of adaptive skills appears to be reflected in the brain's mesoscale neural circuitry, as shown by the S1 connectivity profile, which is also differentially modulated during rest and emotional processing.


Assuntos
Transtorno do Espectro Autista , Córtex Somatossensorial , Humanos , Córtex Somatossensorial/diagnóstico por imagem , Encéfalo , Emoções , Mapeamento Encefálico , Fenótipo , Imageamento por Ressonância Magnética
10.
Am J Psychiatry ; 180(1): 50-64, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36415971

RESUMO

OBJECTIVE: The male preponderance in prevalence of autism is among the most pronounced sex ratios across neurodevelopmental conditions. The authors sought to elucidate the relationship between autism and typical sex-differential neuroanatomy, cognition, and related gene expression. METHODS: Using a novel deep learning framework trained to predict biological sex based on T1-weighted structural brain images, the authors compared sex prediction model performance across neurotypical and autistic males and females. Multiple large-scale data sets comprising T1-weighted MRI data were employed at four stages of the analysis pipeline: 1) pretraining, with the UK Biobank sample (>10,000 individuals); 2) transfer learning and validation, with the ABIDE data sets (1,412 individuals, 5-56 years of age); 3) test and discovery, with the EU-AIMS/AIMS-2-TRIALS LEAP data set (681 individuals, 6-30 years of age); and 4) specificity, with the NeuroIMAGE and ADHD200 data sets (887 individuals, 7-26 years of age). RESULTS: Across both ABIDE and LEAP, features positively predictive of neurotypical males were on average significantly more predictive of autistic males (ABIDE: Cohen's d=0.48; LEAP: Cohen's d=1.34). Features positively predictive of neurotypical females were on average significantly less predictive of autistic females (ABIDE: Cohen's d=1.25; LEAP: Cohen's d=1.29). These differences in sex prediction accuracy in autism were not observed in individuals with ADHD. In autistic females, the male-shifted neurophenotype was further associated with poorer social sensitivity and emotional face processing while also associated with gene expression patterns of midgestational cell types. CONCLUSIONS: The results demonstrate an increased resemblance in both autistic male and female individuals' neuroanatomy with male-characteristic patterns associated with typically sex-differential social cognitive features and related gene expression patterns. The findings hold promise for future research aimed at refining the quest for biological mechanisms underpinning the etiology of autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Masculino , Feminino , Transtorno Autístico/genética , Neuroanatomia , Encéfalo/diagnóstico por imagem , Cognição , Expressão Gênica/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia
11.
Elife ; 112022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35113016

RESUMO

The striatum receives dense dopaminergic projections, making it a key region of the dopaminergic system. Its dysfunction has been implicated in various conditions including Parkinson's disease (PD) and substance use disorder. However, the investigation of dopamine-specific functioning in humans is problematic as current MRI approaches are unable to differentiate between dopaminergic and other projections. Here, we demonstrate that 'connectopic mapping' - a novel approach for characterizing fine-grained, overlapping modes of functional connectivity - can be used to map dopaminergic projections in striatum. We applied connectopic mapping to resting-state functional MRI data of the Human Connectome Project (population cohort; N = 839) and selected the second-order striatal connectivity mode for further analyses. We first validated its specificity to dopaminergic projections by demonstrating a high spatial correlation (r = 0.884) with dopamine transporter availability - a marker of dopaminergic projections - derived from DaT SPECT scans of 209 healthy controls. Next, we obtained the subject-specific second-order modes from 20 controls and 39 PD patients scanned under placebo and under dopamine replacement therapy (L-DOPA), and show that our proposed dopaminergic marker tracks PD diagnosis, symptom severity, and sensitivity to L-DOPA. Finally, across 30 daily alcohol users and 38 daily smokers, we establish strong associations with self-reported alcohol and nicotine use. Our findings provide evidence that the second-order mode of functional connectivity in striatum maps onto dopaminergic projections, tracks inter-individual differences in PD symptom severity and L-DOPA sensitivity, and exhibits strong associations with levels of nicotine and alcohol use, thereby offering a new biomarker for dopamine-related (dys)function in the human brain.


Assuntos
Encéfalo/diagnóstico por imagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/fisiologia , Dopamina/metabolismo , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Encéfalo/fisiopatologia , Estudos de Coortes , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiopatologia , Feminino , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia
12.
Transl Psychiatry ; 12(1): 513, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513630

RESUMO

Transdiagnostic approaches to psychiatry have significant potential in overcoming the limitations of conventional diagnostic paradigms. However, while frameworks such as the Research Domain Criteria have garnered significant enthusiasm among researchers and clinicians from a theoretical angle, examples of how such an approach might translate in practice to understand the biological mechanisms underlying complex patterns of behaviors in realistic and heterogeneous populations have been sparse. In a richly phenotyped clinical sample (n = 186) specifically designed to capture the complex nature of heterogeneity and comorbidity within- and between stress- and neurodevelopmental disorders, we use exploratory factor analysis on a wide range of clinical questionnaires to identify four stable functional domains that transcend diagnosis and relate to negative valence, cognition, social functioning and inhibition/arousal before replicating them in an independent dataset (n = 188). We then use connectopic mapping to map inter-individual variation in fine-grained topographical organization of functional connectivity in the striatum-a central hub in motor, cognitive, affective and reward-related brain circuits-and use multivariate machine learning (canonical correlation analysis) to show that these individualized topographic representations predict transdiagnostic functional domains out of sample (r = 0.20, p = 0.026). We propose that investigating psychiatric symptoms across disorders is a promising path to linking them to underlying biology, and can help bridge the gap between neuroscience and clinical psychiatry.


Assuntos
Transtornos Mentais , Neurociências , Psiquiatria , Humanos , Transtornos Mentais/diagnóstico , Cognição , Recompensa
13.
Transl Psychiatry ; 11(1): 159, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33750765

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is associated with altered functioning in multiple cognitive domains and neural networks. This paper offers an overarching biological perspective across these. We applied a novel strategy that extracts functional connectivity modulations in the brain across one (Psingle), two (Pmix) or three (Pall) cognitive tasks and compared the pattern of modulations between participants with ADHD (n-89), unaffected siblings (n = 93) and controls (n = 84; total N = 266; age range = 8-27 years). Participants with ADHD had significantly fewer Pall connections (modulated regardless of task), but significantly more task-specific (Psingle) connectivity modulations than the other groups. The amplitude of these Psingle modulations was significantly higher in ADHD. Unaffected siblings showed a similar degree of Pall connectivity modulation as controls but a similar degree of Psingle connectivity modulation as ADHD probands. Pall connections were strongly reproducible at the individual level in controls, but showed marked heterogeneity in both participants with ADHD and unaffected siblings. The pattern of reduced task-generic and increased task-specific connectivity modulations in ADHD may be interpreted as reflecting a less efficient functional brain architecture due to a reduction in the ability to generalise processing pathways across multiple cognitive domains. The higher amplitude of unique task-specific connectivity modulations in ADHD may index a more "effortful" coping strategy. Unaffected siblings displayed a task connectivity profile in between that of controls and ADHD probands, supporting an endophenotype view. Our approach provides a new perspective on the core neural underpinnings of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Endofenótipos , Humanos , Imageamento por Ressonância Magnética , Vias Neurais , Adulto Jovem
14.
Mol Autism ; 12(1): 19, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648569

RESUMO

BACKGROUND: Marked sex differences in autism prevalence accentuate the need to understand the role of biological sex-related factors in autism. Efforts to unravel sex differences in the brain organization of autism have, however, been challenged by the limited availability of female data. METHODS: We addressed this gap by using a large sample of males and females with autism and neurotypical (NT) control individuals (ABIDE; Autism: 362 males, 82 females; NT: 409 males, 166 females; 7-18 years). Discovery analyses examined main effects of diagnosis, sex and their interaction across five resting-state fMRI (R-fMRI) metrics (voxel-level Z > 3.1, cluster-level P < 0.01, gaussian random field corrected). Secondary analyses assessed the robustness of the results to different pre-processing approaches and their replicability in two independent samples: the EU-AIMS Longitudinal European Autism Project (LEAP) and the Gender Explorations of Neurogenetics and Development to Advance Autism Research. RESULTS: Discovery analyses in ABIDE revealed significant main effects of diagnosis and sex across the intrinsic functional connectivity of the posterior cingulate cortex, regional homogeneity and voxel-mirrored homotopic connectivity (VMHC) in several cortical regions, largely converging in the default network midline. Sex-by-diagnosis interactions were confined to the dorsolateral occipital cortex, with reduced VMHC in females with autism. All findings were robust to different pre-processing steps. Replicability in independent samples varied by R-fMRI measures and effects with the targeted sex-by-diagnosis interaction being replicated in the larger of the two replication samples-EU-AIMS LEAP. LIMITATIONS: Given the lack of a priori harmonization among the discovery and replication datasets available to date, sample-related variation remained and may have affected replicability. CONCLUSIONS: Atypical cross-hemispheric interactions are neurobiologically relevant to autism. They likely result from the combination of sex-dependent and sex-independent factors with a differential effect across functional cortical networks. Systematic assessments of the factors contributing to replicability are needed and necessitate coordinated large-scale data collection across studies.


Assuntos
Transtorno Autístico/fisiopatologia , Encéfalo/fisiopatologia , Caracteres Sexuais , Adolescente , Transtorno Autístico/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
15.
Commun Biol ; 4(1): 574, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990680

RESUMO

Social-communication (SC) and restricted repetitive behaviors (RRB) are autism diagnostic symptom domains. SC and RRB severity can markedly differ within and between individuals and may be underpinned by different neural circuitry and genetic mechanisms. Modeling SC-RRB balance could help identify how neural circuitry and genetic mechanisms map onto such phenotypic heterogeneity. Here, we developed a phenotypic stratification model that makes highly accurate (97-99%) out-of-sample SC = RRB, SC > RRB, and RRB > SC subtype predictions. Applying this model to resting state fMRI data from the EU-AIMS LEAP dataset (n = 509), we find that while the phenotypic subtypes share many commonalities in terms of intrinsic functional connectivity, they also show replicable differences within some networks compared to a typically-developing group (TD). Specifically, the somatomotor network is hypoconnected with perisylvian circuitry in SC > RRB and visual association circuitry in SC = RRB. The SC = RRB subtype show hyperconnectivity between medial motor and anterior salience circuitry. Genes that are highly expressed within these networks show a differential enrichment pattern with known autism-associated genes, indicating that such circuits are affected by differing autism-associated genomic mechanisms. These results suggest that SC-RRB imbalance subtypes share many commonalities, but also express subtle differences in functional neural circuitry and the genomic underpinnings behind such circuitry.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtornos do Comportamento Infantil/complicações , Comunicação , Vias Neurais , Transtornos do Neurodesenvolvimento/patologia , Comportamento Estereotipado , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/etiologia
16.
Psychiatry Res ; 298: 113795, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33582524

RESUMO

Reversal learning deficits following reward and punishment processing are observed across disruptive behaviors (DB) and attention-deficit/hyperactivity disorder (ADHD), and have been associated with callous-unemotional (CU) traits. However, it remains unknown to what extent these altered reinforcement sensitivities are linked to the co-occurrence of oppositional traits, ADHD symptoms, and CU traits. Reward and punishment sensitivity and perseverative behavior were therefore derived from a probabilistic reversal learning task to investigate reinforcement sensitivity in participants with DB (n=183, ODD=62, CD=10, combined=57, age-range 8-18), ADHD (n=144, age-range 11-28), and controls (n=191, age-range 8-26). The SNAP-IV and Conners rating scales were used to assess oppositional and ADHD traits. The Inventory of CU traits was used to assess CU traits. Decreased reward sensitivity was associated with ADHD symptom severity (p=0.018) if corrected for oppositional symptoms. ADHD symptomatology interacted with oppositional behavior on perseveration (p=0.019), with the former aggravating the effect of oppositional behavior on perseveration and vice versa. Within a pooled sample, reversal learning alterations were associated with the severity of ADHD symptoms, underpinned by hyposensitivity to reward and increased perseveration. These results show ADHD traits, as opposed to oppositional behavior and CU traits, is associated with decreased reward-based learning in adolescents and adults.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno da Conduta , Adolescente , Transtornos de Deficit da Atenção e do Comportamento Disruptivo , Humanos , Punição , Recompensa
17.
Artigo em Inglês | MEDLINE | ID: mdl-30773473

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder, putatively induced by dissociable dysfunctional biobehavioral pathways. Here, we present a proof-of-concept study to parse ADHD-related heterogeneity in its underlying neurobiology by investigating functional connectivity across multiple brain networks to 1) disentangle categorical diagnosis-related effects from dimensional behavior-related effects and 2) functionally map these neural correlates to neurocognitive measures. METHODS: We identified functional connectivity abnormalities related to ADHD across 14 networks within a large resting-state functional magnetic resonance imaging dataset (n = 409; age = 17.5 ± 3.3 years). We tested these abnormalities for their association with the categorical ADHD diagnosis and with dimensional inattention and hyperactivity/impulsivity scores using a novel modeling framework, creating orthogonalized models. Next, we evaluated the relationship of these findings with neurocognitive measures (working memory, response inhibition, reaction time variability, reward sensitivity). RESULTS: Within the default mode network, we mainly observed categorical ADHD-related functional connectivity abnormalities, unrelated to neurocognitive measures. Clusters within the visual networks primarily related to dimensional scores of inattention and reaction time variability, while findings within the sensorimotor networks were mainly linked to hyperactivity/impulsivity and both reward sensitivity and working memory. Findings within the cerebellum network and salience network related to both categorical and dimensional ADHD measures and were linked to response inhibition and reaction time variability. CONCLUSIONS: This proof-of-concept study identified ADHD-related neural correlates across multiple functional networks, showing distinct categorical and dimensional mechanisms and their links to neurocognitive functioning.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/fisiopatologia , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-30799285

RESUMO

BACKGROUND: The neuroanatomical basis of autism spectrum disorder (ASD) has remained elusive, mostly owing to high biological and clinical heterogeneity among diagnosed individuals. Despite considerable effort toward understanding ASD using neuroimaging biomarkers, heterogeneity remains a barrier, partly because studies mostly employ case-control approaches, which assume that the clinical group is homogeneous. METHODS: Here, we used an innovative normative modeling approach to parse biological heterogeneity in ASD. We aimed to dissect the neuroanatomy of ASD by mapping the deviations from a typical pattern of neuroanatomical development at the level of the individual and to show the necessity to look beyond the case-control paradigm to understand the neurobiology of ASD. We first estimated a vertexwise normative model of cortical thickness development using Gaussian process regression, then mapped the deviation of each participant from the typical pattern. For this, we employed a heterogeneous cross-sectional sample of 206 typically developing individuals (127 males) and 321 individuals with ASD (232 males) (6-31 years of age). RESULTS: We found few case-control differences, but the ASD cohort showed highly individualized patterns of deviations in cortical thickness that were widespread across the brain. These deviations correlated with severity of repetitive behaviors and social communicative symptoms, although only repetitive behaviors survived corrections for multiple testing. CONCLUSIONS: Our results 1) reinforce the notion that individuals with ASD show distinct, highly individualized trajectories of brain development and 2) show that by focusing on common effects (i.e., the "average ASD participant"), the case-control approach disguises considerable interindividual variation crucial for precision medicine.


Assuntos
Transtorno do Espectro Autista/patologia , Córtex Cerebral/patologia , Modelos Neurológicos , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Estudos Transversais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-30711508

RESUMO

BACKGROUND: Resting-state functional magnetic resonance imaging-based studies on functional connectivity in autism spectrum disorder (ASD) have generated inconsistent results. Interpretation of findings is further hampered by small samples and a focus on a limited number of networks, with networks underlying sensory processing being largely underexamined. We aimed to comprehensively characterize ASD-related alterations within and between 20 well-characterized resting-state networks using baseline data from the EU-AIMS (European Autism Interventions-A Multicentre Study for Developing New Medications) Longitudinal European Autism Project. METHODS: Resting-state functional magnetic resonance imaging data was available for 265 individuals with ASD (7.5-30.3 years; 73.2% male) and 218 typically developing individuals (6.9-29.8 years; 64.2% male), all with IQ > 70. We compared functional connectivity within 20 networks-obtained using independent component analysis-between the ASD and typically developing groups, and related functional connectivity within these networks to continuous (overall) autism trait severity scores derived from the Social Responsiveness Scale Second Edition across all participants. Furthermore, we investigated case-control differences and autism trait-related alterations in between-network connectivity. RESULTS: Higher autism traits were associated with increased connectivity within salience, medial motor, and orbitofrontal networks. However, we did not replicate previously reported case-control differences within these networks. The between-network analysis did reveal case-control differences showing on average 1) decreased connectivity of the visual association network with somatosensory, medial, and lateral motor networks, and 2) increased connectivity of the cerebellum with these sensory and motor networks in ASD compared with typically developing subjects. CONCLUSIONS: We demonstrate ASD-related alterations in within- and between-network connectivity. The between-network alterations broadly affect connectivity between cerebellum, visual, and sensory-motor networks, potentially underlying impairments in multisensory and visual-motor integration frequently observed in ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Cerebelo/fisiopatologia , Córtex Sensório-Motor/fisiopatologia , Córtex Visual/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico , Estudos de Casos e Controles , Criança , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Adulto Jovem
20.
Sci Transl Med ; 11(481)2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814340

RESUMO

Despite the high clinical burden, little is known about pathophysiology underlying autism spectrum disorder (ASD). Recent resting-state functional magnetic resonance imaging (rs-fMRI) studies have found atypical synchronization of brain activity in ASD. However, no consensus has been reached on the nature and clinical relevance of these alterations. Here, we addressed these questions in four large ASD cohorts. Using rs-fMRI, we identified functional connectivity alterations associated with ASD. We tested for associations of these imaging phenotypes with clinical and demographic factors such as age, sex, medication status, and clinical symptom severity. Our results showed reproducible patterns of ASD-associated functional hyper- and hypoconnectivity. Hypoconnectivity was primarily restricted to sensory-motor regions, whereas hyperconnectivity hubs were predominately located in prefrontal and parietal cortices. Shifts in cortico-cortical between-network connectivity from outside to within the identified regions were shown to be a key driver of these abnormalities. This reproducible pathophysiological phenotype was partially associated with core ASD symptoms related to communication and daily living skills and was not affected by age, sex, or medication status. Although the large effect sizes in standardized cohorts are encouraging with respect to potential application as a treatment and for patient stratification, the moderate link to clinical symptoms and the large overlap with healthy controls currently limit the usability of identified alterations as diagnostic or efficacy readout.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Rede Nervosa/fisiopatologia , Adolescente , Estudos de Coortes , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA