Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 18: 1342-1351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612757

RESUMO

The MinION sequencer by Oxford Nanopore Technologies turns DNA and RNA sequencing into a routine task in biology laboratories or in field research. For downstream analysis it is required to have a sufficient amount of target reads. Especially prokaryotic or bacteriophagic sequencing samples can contain a significant amount of off-target sequences in the processed sample, stemming from human DNA/RNA contamination, insufficient rRNA depletion, or remaining DNA/RNA from other organisms (e.g. host organism from bacteriophage cultivation). Such impurity, contamination and off-targets (ICOs) block read capacity, requiring to sequence deeper. In comparison to second-generation sequencing, MinION sequencing allows to reuse its chip after a (partial) run. This allows further usage of the same chip with more sample, even after adjusting the library preparation to reduce ICOs. The earlier a sample's ICOs are detected, the better the sequencing chip can be conserved for future use. Here we present sequ-into, a low-resource and user-friendly cross-platform tool to detect ICO sequences from a predefined ICO database in samples early during a MinION sequencing run. The data provided by sequ-into empowers the user to quickly take action to preserve sample material and chip capacity. sequ-into is available from https://github.com/mjoppich/sequ-into.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA