Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Cancer ; 21(1): 76, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461524

RESUMO

BACKGROUND: Breast cancer is the most frequently diagnosed malignancy among women. However, the role of microRNA (miRNA) expression in breast cancer progression is not fully understood. In this study we examined predictive interactions between differentially expressed miRNAs and mRNAs in breast cancer cell lines representative of the common molecular subtypes. Integrative bioinformatics analysis identified miR-193 and miR-210 as potential regulatory biomarkers of mRNA in breast cancer. Several recent studies have investigated these miRNAs in a broad range of tumors, but the mechanism of their involvement in cancer progression has not previously been investigated. METHODS: The miRNA-mRNA interactions in breast cancer cell lines were identified by parallel expression analysis and miRNA target prediction programs. The expression profiles of mRNA and miRNAs from luminal (MCF-7, MCF-7/AZ and T47D), HER2 (BT20 and SK-BR3) and triple negative subtypes (Hs578T e MDA-MB-231) could be clearly separated by unsupervised analysis using HB4A cell line as a control. Breast cancer miRNA data from TCGA patients were grouped according to molecular subtypes and then used to validate these findings. Expression of miR-193 and miR-210 was investigated by miRNA transient silencing assays using the MCF7, BT20 and MDA-MB-231 cell lines. Functional studies included, xCELLigence system, ApoTox-Glo triplex assay, flow cytometry and transwell inserts were performed to determine cell proliferation, cytotoxicity, apoptosis, migration and invasion, respectively. RESULTS: The most evident effects were associated with cell proliferation after miR-210 silencing in triple negative subtype cell line MDA-MB-231. Using in silico prediction algorithms, TNFRSF10 was identified as one of the potential regulated downstream targets for both miRNAs. The TNFRSF10C and TNFRSF10D mRNA expression inversely correlated with the expression levels of miR-193 and miR210 in breast cell lines and breast cancer patients, respectively. Other potential regulated genes whose expression also inversely correlated with both miRNAs were CCND1, a known mediator on invasion and metastasis, and the tumor suppressor gene RUNX3. CONCLUSIONS: In summary, our findings identify miR-193 and miR-210 as potential regulatory miRNA in different molecular subtypes of breast cancer and suggest that miR-210 may have a specific role in MDA-MB-231 proliferation. Our results highlight important new downstream regulated targets that may serve as promising therapeutic pathways for aggressive breast cancers.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/análise , Mama/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Biologia Computacional , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Ciclina D1/genética , Feminino , Proteínas Ligadas por GPI/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/análise , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Membro 10c de Receptores do Fator de Necrose Tumoral/genética , Receptores Chamariz do Fator de Necrose Tumoral/genética
2.
Invest New Drugs ; 38(4): 1044-1055, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31781904

RESUMO

Gliomas account for nearly 70% of the central nervous system tumors and present a median survival of approximately 12-17 months. Studies have shown that administration of novel natural antineoplastic agents is been highly effective for treating gliomas. This study was conducted to investigate the antitumor potential (in vitro and in vivo) of Miconia chamissois Naudin for treating glioblastomas. We investigated the cytotoxicity of the chloroform partition and its sub-fraction in glioblastoma cell lines (GAMG and U251MG) and one normal cell line of astrocytes. The fraction showed cytotoxicity and was selective for tumor cells. Characterization of this fraction revealed a single compound, Matteucinol, which was first identified in the species M. chamissois. Matteucinol promoted cell death via intrinsic apoptosis in the adult glioblastoma lines. In addition, Matteucinol significantly reduced the migration, invasion, and clonogenicity of the tumor cells. Notably, it also reduced tumor growth and angiogenesis in vivo. Moreover, this agent showed synergistic effects with temozolomide, a chemotherapeutic agent commonly used in clinical practice. Our study demonstrates that Matteucinol from M chamissois is a promising compound for the treatment of glioblastomas and may be used along with the existing chemotherapeutic agents for more effective treatment.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Cromonas/uso terapêutico , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Cromonas/isolamento & purificação , Cromonas/farmacologia , Glioblastoma/irrigação sanguínea , Humanos , Melastomataceae , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Extratos Vegetais , Folhas de Planta
3.
Molecules ; 24(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683835

RESUMO

Plant-based compounds are an option to explore and perhaps overcome the limitations of current antitumor treatments. Annona coriacea Mart. is a plant with a broad spectrum of biological activities, but its antitumor activity is still unclear. The purpose of our study was to determine the effects of A. coriacea fractions on a panel of cervical cancer cell lines and a normal keratinocyte cell line. The antitumor effect was investigated in vitro by viability assays, cell cycle, apoptosis, migration, and invasion assays. Intracellular signaling was assessed by Western blot, and major compounds were identified by mass spectrometry. All fractions exhibited a cytotoxic effect on cisplatin-resistant cell lines, SiHa and HeLa. C3 and C5 were significantly more cytotoxic and selective than cisplatin in SiHa and Hela cells. However, in CaSki, a cisplatin-sensitive cell line, the compounds did not demonstrate higher cytotoxicity when compared with cisplatin. Alkaloids and acetogenins were the main compounds identified in the fractions. These fractions also markedly decreased cell proliferation with p21 increase and cell cycle arrest in G2/M. These effects were accompanied by an increase of H2AX phosphorylation levels and DNA damage index. In addition, fractions C3 and C5 promoted p62 accumulation and decrease of LC3II, as well as acid vesicle levels, indicating the inhibition of autophagic flow. These findings suggest that A. coriacea fractions may become effective antineoplastic drugs and highlight the autophagy inhibition properties of these fractions in sensitizing cervical cancer cells to treatment.


Assuntos
Annona/química , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos
4.
J Nanosci Nanotechnol ; 18(7): 5133-5142, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442705

RESUMO

Polypropylene nanocomposites with expanded graphite nanosheets (xGN) were synthesized by In Situ polymerization employing a Ziegler-Natta catalyst supported on particles of MgCl2 containing xGN (mass ratio 1:1) and internal electron donor to control isotacticity, and their properties were compared with those of neat polypropylene obtained using a prepared standard Ziegler-Natta catalyst. SEM micrographs showed an alteration in the morphology of the catalyst with nanoparticles when compared with the standard one. It was noted that the catalyst containing xGN was more reactive for propylene polymerization than the standard one. By thermogravimetric analyses, it was detected that the PP/xGN nanocomposites showed higher thermal stability than PP. Differential scanning calorimetry (DSC) showed that the nanocomposites presented higher crystallinity degree, indicating that the nanofillers acted as nucleating agent. Scanning (SEM) and transmission (TEM) electron microscopies showed that the nanofillers were well dispersed into the PP matrix. By dynamic-mechanical analyses (DMA) it was observed an increase in glass transition temperature and the nanocomposites moduli.

5.
J Strength Cond Res ; 30(2): 311-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23604000

RESUMO

Biomarkers of inflammation, muscle damage, and oxidative stress after high-intensity exercise have been described previously; however, further understanding of their role in the postexercise recovery period is necessary. Because these markers have been implicated in cell signaling, they may be specifically related to the training adaptations induced by high-intensity exercise. Thus, a clear model showing their responses to exercise may be useful in characterizing the relative recovery status of an athlete. The purpose of this study was twofold: (a) to investigate the time course of markers of muscle damage and inflammation in the blood from 3 to 72 hours after combined training exercises and (b) to investigate indicators of oxidative stress and damage associated with increased reactive oxygen species production during high-intensity exercise in elite athletes. Nineteen male athletes performed a combination of high-intensity aerobic and anaerobic training exercises. Samples were acquired immediately before and at 3, 6, 12, 24, 48, and 72 hours after exercise. The appearance and clearance of creatine kinase and lactate dehydrogenase in the blood occurred faster than previous studies have reported. The neutrophil/lymphocyte ratio summarizes the mobilization of 2 leukocyte subpopulations in a single marker and may be used to predict the end of the postexercise recovery period. Further analysis of the immune response using serum cytokines indicated that high-intensity exercise performed by highly trained athletes only generated inflammation that was localized to the skeletal muscle. Biomarkers are not a replacement for performance tests, but when used in conjunction, they may offer a better indication of metabolic recovery status. Therefore, the use of biomarkers can improve a coach's ability to assess the recovery period after an exercise session and to establish the intensity of subsequent training sessions.


Assuntos
Exercício Físico/fisiologia , Esforço Físico/fisiologia , Adulto , Biomarcadores/metabolismo , Catalase/sangue , Creatina Quinase/sangue , Citocinas/sangue , Humanos , L-Lactato Desidrogenase/sangue , Contagem de Leucócitos , Masculino , Neutrófilos/metabolismo , Recuperação de Função Fisiológica/fisiologia
6.
Cells ; 11(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011716

RESUMO

Cetuximab is the sole anti-EGFR monoclonal antibody that is FDA approved to treat head and neck squamous cell carcinoma (HNSCC). However, no predictive biomarkers of cetuximab response are known for HNSCC. Herein, we address the molecular mechanisms underlying cetuximab resistance in an in vitro model. We established a cetuximab resistant model (FaDu), using increased cetuximab concentrations for more than eight months. The resistance and parental cells were evaluated for cell viability and functional assays. Protein expression was analyzed by Western blot and human cell surface panel by lyoplate. The mutational profile and copy number alterations (CNA) were analyzed using whole-exome sequencing (WES) and the NanoString platform. FaDu resistant clones exhibited at least two-fold higher IC50 compared to the parental cell line. WES showed relevant mutations in several cancer-related genes, and the comparative mRNA expression analysis showed 36 differentially expressed genes associated with EGFR tyrosine kinase inhibitors resistance, RAS, MAPK, and mTOR signaling. Importantly, we observed that overexpression of KRAS, RhoA, and CD44 was associated with cetuximab resistance. Protein analysis revealed EGFR phosphorylation inhibition and mTOR increase in resistant cells. Moreover, the resistant cell line demonstrated an aggressive phenotype with a significant increase in adhesion, the number of colonies, and migration rates. Overall, we identified several molecular alterations in the cetuximab resistant cell line that may constitute novel biomarkers of cetuximab response such as mTOR and RhoA overexpression. These findings indicate new strategies to overcome anti-EGFR resistance in HNSCC.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Cetuximab/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Humanos , Transdução de Sinais
7.
Exp Ther Med ; 16(2): 557-566, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30112023

RESUMO

A large number of classic antineoplastic agents are derived from plants. Euphorbia tirucalli L. (Euphorbiaceae) is a subtropical and tropical plant, used in Brazilian folk medicine against many diseases, including cancer, yet little is known about its true anticancer properties. The present study evaluated the antitumor effect of the tetracyclic triterpene alcohol, euphol, the main constituent of E. tirucalli in a panel of 73 human cancer lines from 15 tumor types. The biological effect of euphol in pancreatic cells was also assessed. The combination index was further used to explore euphol interactions with standard drugs. Euphol showed a cytotoxicity effect against several cancer cell lines (IC50 range, 1.41-38.89 µM), particularly in esophageal squamous cell (11.08 µM) and pancreatic carcinoma cells (6.84 µM), followed by prostate, melanoma, and colon cancer. Cytotoxicity effects were seen in all cancer cell lines, with more than half deemed highly sensitive. Euphol inhibited proliferation, motility and colony formation in pancreatic cancer cells. Importantly, euphol exhibited synergistic interactions with gemcitabine and paclitaxel in pancreatic and esophageal cell lines, respectively. To the best of our knowledge, this study constitutes the largest in vitro screening of euphol efficacy on cancer cell lines and revealed its in vitro anti-cancer properties, particularly in pancreatic and esophageal cell lines, suggesting that euphol, either as a single agent or in combination with conventional chemotherapy, is a potential anti-cancer drug.

8.
Oncol Lett ; 14(1): 1054-1060, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28693273

RESUMO

Breast cancer (BC) is a leading cause of cancer-associated mortality in females worldwide. MicroRNAs (miRNAs or miRs), a type of non-coding RNA, have been reported to be important in the regulation of BC onset and progression. Several studies have implicated the role of miR-183 and miR-494 in different types of cancer. However, the biological functions of these miRNAs in BC remain largely unknown. In the present study, the expression of both miRNAs was assessed in the MDA-MB-231 and MDA-MB-468 BC cell lines. It was hypothesized that miR-183 and miR-494 serve an important role in regulating the expression of key genes associated with the metastatic phenotype of BC cells. To further understand their role, the expression of these miRNAs was restored in selected BC cell lines. Functional assays revealed that overexpression of miR-183 or miR-494 modulated the proliferation and migration of MDA-MB-231 and MDA-MB-468 cells in vitro. Additionally, retinoblastoma 1 (RB1) was identified to be a downstream target of both miRNAs by in silico analysis. Western blotting revealed that upregulation of miR-183 was associated with downregulation of RB1 protein in MDA-MB-231 cells. In conclusion, the present results support the hypothesis that miR-183 and miR-494 serve a pivotal role in BC metastasis, and that miR-183 may act as an oncogene by targeting RB1 protein in MDA-MB-231 cells.

9.
Diab Vasc Dis Res ; 11(2): 110-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24553253

RESUMO

The development of cardiovascular complications in patients with diabetes is often associated with an imbalance between reactive oxygen species and antioxidant systems. This imbalance can contribute to high cardiac collagen content, which increases cross-linking and the stiffness of the myocardium. In this study, the protective effect of phaseolamin against damage under oxidative stress and collagen deposition in the cardiac tissue in association with diabetes was evaluated. Non-diabetic and diabetic animals were distributed into groups and treated for 20 days with commercial phaseolamin. The phaseolamin treatment increased total antioxidant activity but reduced the following in diabetic rats: (a) hyperglycaemic state, (b) catalase and superoxide dismutase activity and (c) tissue damage caused by lipid peroxidation. Additionally, the phaseolamin treatment attenuated the collagen levels compared to non-treated diabetic rats. Thus, the short-term anti-hyperglycaemic effect of the phaseolamin treatment may prevent the initial changes caused by oxidative stress and the deposition of collagen, as well as reduce the incidence of heart complications.


Assuntos
Colágeno/metabolismo , Diabetes Mellitus Experimental , Estresse Oxidativo/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Animais , Antioxidantes/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Estreptozocina
10.
In. Schiabel, Homero; Slaets, Annie France Frère; Costa, Luciano da Fontoura; Baffa Filho, Oswaldo; Marques, Paulo Mazzoncini de Azevedo. Anais do III Fórum Nacional de Ciência e Tecnologia em Saúde. Säo Carlos, s.n, 1996. p.685-686.
Monografia em Português | LILACS | ID: lil-233931

RESUMO

Este trabalho propõe a implementação de um cartão eletrônico identificador de pacientes diabéticos, empregando cartões inteligentes. Os catões pretendem ser os identificadores dos diabéticos, contendo seus dados pessoais, os dados relativos ao diabetes, a terapêutica adotada e os dados laboratoriais.


Assuntos
Diabetes Mellitus , Sistemas de Identificação de Pacientes , Diabetes Mellitus Tipo 1 , Estilo de Vida , Diabetes Mellitus Tipo 2 , Sistemas de Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA