Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 14(7): 3817-26, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24845684

RESUMO

The future exploitation of the exceptional properties of nanocrystal (NC) thin films deposited from liquid dispersions of nanoparticles relies upon our ability to produce films with improved electrical properties by simple and inexpensive means. Here, we demonstrate that the electronic conduction of solution-processed NC films can be strongly enhanced without the need of postdeposition treatments, via specific molecules adsorbed at the surfaces of adjacent NCs. This effect is demonstrated for Si NC films doped with the strong molecular oxidizing agent tetrafluoro-tetracyanoquinodimethane (F4-TCNQ). Density functional calculations were carried out with molecule-doped superlattice solid models. It is shown that, when populated by electrons, hybrid molecule/NC states edge (and may actually resonate with) the conduction-band states of the NC solid. This provides extra electronic connectivity across the NC network as the molecules effectively flatten the electronic potential barriers for electron transfer across the otherwise vacuum-filled network interstitialcies.

2.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38139784

RESUMO

Alzheimer's disease causes chronic neurodegeneration and is the leading cause of dementia in the world. The causes of this disease are not fully understood but seem to involve two essential cerebral pathways: cholinergic and amyloid. The simultaneous inhibition of AChE, BuChE, and BACE-1, essential enzymes involved in those pathways, is a promising therapeutic approach to treat the symptoms and, hopefully, also halt the disease progression. This study sought to identify triple enzymatic inhibitors based on stereo-electronic requirements deduced from molecular modeling of AChE, BuChE, and BACE-1 active sites. A pharmacophore model was built, displaying four hydrophobic centers, three hydrogen bond acceptors, and one positively charged nitrogen, and used to prioritize molecules found in virtual libraries. Compounds showing adequate overlapping rates with the pharmacophore were subjected to molecular docking against the three enzymes and those with an adequate docking score (n = 12) were evaluated for physicochemical and toxicological parameters and commercial availability. The structure exhibiting the greatest inhibitory potential against all three enzymes was subjected to molecular dynamics simulations (100 ns) to assess the stability of the inhibitor-enzyme systems. The results of this in silico approach indicate ZINC1733 can be a potential multi-target inhibitor of AChE, BuChE, and BACE-1, and future enzymatic assays are planned to validate those results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA