Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 554
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7997): 194-206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096902

RESUMO

The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.


Assuntos
Endonucleases , Elementos Nucleotídeos Longos e Dispersos , DNA Polimerase Dirigida por RNA , Transcrição Reversa , Humanos , Microscopia Crioeletrônica , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , RNA/genética , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Cristalografia por Raios X , DNA/biossíntese , DNA/genética , Imunidade Inata , Interferons/biossíntese
2.
Nature ; 624(7990): 92-101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957399

RESUMO

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Carbono/análise , Carbono/metabolismo , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Atividades Humanas , Recuperação e Remediação Ambiental/tendências , Desenvolvimento Sustentável/tendências , Aquecimento Global/prevenção & controle
3.
Nature ; 612(7940): 483-487, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477532

RESUMO

Recent observations suggest that the large carbon sink in mature and recovering forests may be strongly limited by nitrogen1-3. Nitrogen-fixing trees (fixers) in symbiosis with bacteria provide the main natural source of new nitrogen to tropical forests3,4. However, abundances of fixers are tightly constrained5-7, highlighting the fundamental unanswered question of what limits new nitrogen entering tropical ecosystems. Here we examine whether herbivory by animals is responsible for limiting symbiotic nitrogen fixation in tropical forests. We evaluate whether nitrogen-fixing trees experience more herbivory than other trees, whether herbivory carries a substantial carbon cost, and whether high herbivory is a result of herbivores targeting the nitrogen-rich leaves of fixers8,9. We analysed 1,626 leaves from 350 seedlings of 43 tropical tree species in Panama and found that: (1) although herbivory reduces the growth and survival of all seedlings, nitrogen-fixing trees undergo 26% more herbivory than non-fixers; (2) fixers have 34% higher carbon opportunity costs owing to herbivory than non-fixers, exceeding the metabolic cost of fixing nitrogen; and (3) the high herbivory of fixers is not driven by high leaf nitrogen. Our findings reveal that herbivory may be sufficient to limit tropical symbiotic nitrogen fixation and could constrain its role in alleviating nitrogen limitation on the tropical carbon sink.


Assuntos
Florestas , Herbivoria , Fixação de Nitrogênio , Nitrogênio , Árvores , Clima Tropical , Animais , Carbono/metabolismo , Sequestro de Carbono , Nitrogênio/metabolismo , Panamá , Folhas de Planta , Plântula , Árvores/classificação , Árvores/metabolismo
4.
Nature ; 608(7923): 528-533, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35585230

RESUMO

Evidence exists that tree mortality is accelerating in some regions of the tropics1,2, with profound consequences for the future of the tropical carbon sink and the global anthropogenic carbon budget left to limit peak global warming below 2 °C. However, the mechanisms that may be driving such mortality changes and whether particular species are especially vulnerable remain unclear3-8. Here we analyse a 49-year record of tree dynamics from 24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist tropics and find that annual tree mortality risk has, on average, doubled across all plots and species over the last 35 years, indicating a potential halving in life expectancy and carbon residence time. Associated losses in biomass were not offset by gains from growth and recruitment. Plots in less moist local climates presented higher average mortality risk, but local mean climate did not predict the pace of temporal increase in mortality risk. Species varied in the trajectories of their mortality risk, with the highest average risk found nearer to the upper end of the atmospheric vapour pressure deficit niches of species. A long-term increase in vapour pressure deficit was evident across the region, suggesting that thresholds involving atmospheric water stress, driven by global warming, may be a primary cause of increasing tree mortality in moist tropical forests.


Assuntos
Atmosfera , Estresse Fisiológico , Árvores , Clima Tropical , Água , Aclimatação , Atmosfera/química , Austrália , Biomassa , Carbono/metabolismo , Sequestro de Carbono , Desidratação , Aquecimento Global/estatística & dados numéricos , História do Século XX , História do Século XXI , Umidade , Densidade Demográfica , Risco , Fatores de Tempo , Árvores/classificação , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Água/análise , Água/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(14): e2317825121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536756

RESUMO

Trimethylamine-N-oxide (TMAO) and urea are metabolites that are used by some marine animals to maintain their cell volume in a saline environment. Urea is a well-known denaturant, and TMAO is a protective osmolyte that counteracts urea-induced protein denaturation. TMAO also has a general protein-protective effect, for example, it counters pressure-induced protein denaturation in deep-sea fish. These opposing effects on protein stability have been linked to the spatial relationship of TMAO, urea, and protein molecules. It is generally accepted that urea-induced denaturation proceeds through the accumulation of urea at the protein surface and their subsequent interaction. In contrast, it has been suggested that TMAO's protein-stabilizing effects stem from its exclusion from the protein surface, and its ability to deplete urea from protein surfaces; however, these spatial relationships are uncertain. We used neutron diffraction, coupled with structural refinement modeling, to study the spatial associations of TMAO and urea with the tripeptide derivative glycine-proline-glycinamide in aqueous urea, aqueous TMAO, and aqueous urea-TMAO (in the mole ratio 1:2 TMAO:urea). We found that TMAO depleted urea from the peptide's surface and that while TMAO was not excluded from the tripeptide's surface, strong atomic interactions between the peptide and TMAO were limited to hydrogen bond donating peptide groups. We found that the repartition of urea, by TMAO, was associated with preferential TMAO-urea bonding and enhanced urea-water hydrogen bonding, thereby anchoring urea in the bulk solution and depleting urea from the peptide surface.


Assuntos
Peptídeos , Ureia , Animais , Ureia/química , Peptídeos/química , Água/química , Metilaminas/química , Proteínas de Membrana
6.
EMBO J ; 41(17): e111118, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35919947

RESUMO

Organoids enable in vitro modeling of complex developmental processes and disease pathologies. Like most 3D cultures, organoids lack sufficient oxygen supply and therefore experience cellular stress. These negative effects are particularly prominent in complex models, such as brain organoids, and can affect lineage commitment. Here, we analyze brain organoid and fetal single-cell RNA sequencing (scRNAseq) data from published and new datasets, totaling about 190,000 cells. We identify a unique stress signature in the data from all organoid samples, but not in fetal samples. We demonstrate that cell stress is limited to a defined subpopulation of cells that is unique to organoids and does not affect neuronal specification or maturation. We have developed a computational algorithm, Gruffi, which uses granular functional filtering to identify and remove stressed cells from any organoid scRNAseq dataset in an unbiased manner. We validated our method using six additional datasets from different organoid protocols and early brains, and show its usefulness to other organoid systems including retinal organoids. Our data show that the adverse effects of cell stress can be corrected by bioinformatic analysis for improved delineation of developmental trajectories and resemblance to in vivo data.


Assuntos
Organoides , Transcriptoma , Algoritmos , Encéfalo , Biologia Computacional
7.
Nature ; 579(7797): 80-87, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132693

RESUMO

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1-3. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.


Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Clima Tropical , África , Atmosfera/química , Biomassa , Brasil , Secas , História do Século XX , História do Século XXI , Modelos Teóricos , Temperatura
8.
Nat Mater ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671164

RESUMO

Advances in nuclear power reactors include the use of mixed oxide fuel, containing uranium and plutonium oxides. The high-temperature behaviour and structure of PuO2-x above 1,800 K remain largely unexplored, and these conditions must be considered for reactor design and planning for the mitigation of severe accidents. Here, we measure the atomic structure of PuO2-x through the melting transition up to 3,000 ± 50 K using X-ray scattering of aerodynamically levitated and laser-beam-heated samples, with O/Pu ranging from 1.57 to 1.76. Liquid structural models consistent with the X-ray data are developed using machine-learned interatomic potentials and density functional theory. Molten PuO1.76 contains some degree of covalent Pu-O bonding, signalled by the degeneracy of Pu 5f and O 2p orbitals. The liquid is isomorphous with molten CeO1.75, demonstrating the latter as a non-radioactive, non-toxic, structural surrogate when differences in the oxidation potentials of Pu and Ce are accounted for. These characterizations provide essential constraints for modelling pertinent to reactor safety design.

9.
Ecol Lett ; 27(1): e14351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38111128

RESUMO

Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.


Assuntos
Ecossistema , Florestas , Humanos , Árvores , Brasil , Biodiversidade
10.
Glob Chang Biol ; 30(1): e17140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273497

RESUMO

Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana-tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana-to-tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana-favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.


Des preuves de plus en plus nombreuses suggèrent que la competition entre lianes et les arbres menace le puits de carbone mondial en ralentissant la récupération des forêts après une perturbation. Une théorie récente, fondée sur des observations locales et régionales, propose en outre que le succès compétitif des lianes sur les arbres est dû aux interactions entre la perturbation forestière et le climat. Nous présentons la première évaluation mondiale de la performance relative des lianes par rapport aux arbres en réponse aux perturbations forestières et aux facteurs climatiques. En utilisant un ensemble de données sans précédent, nous avons analysé 651 échantillons de végétation représentant 26,538 lianes et 82,802 arbres, issus de 556 emplacements uniques dans le monde entier, tirés de 83 publications. Les résultats montrent que les lianes ont de meilleure performances par rapport aux arbres (augmentation du ratio liane-arbre) lorsque les forêts sont perturbées, sous des zones chaudes aves précipitations faibles, et vers les basses altitudes tropicales. Nous avons également constaté que les lianes peuvent être un facteur critique entravant la récupération des forêts dans les forêts perturbées connaissant des climats favorables aux lianes, car les données de chronoséquence montrent que le succès compétitif élevé des lianes sur les arbres peut persister pendant des décennies après les perturbations, surtout lorsque la température annuelle moyenne dépasse 27.8°C, que les précipitations sont inférieures à 1614 mm et que le déficit hydrique climatique est supérieur à 829 mm. Ces découvertes révèlent que les forêts tropicales dégradées avec des conditions environnementales favorables aux lianes sont disproportionnellement plus vulnérables à la dominance des lianes, et peuvent ainsi potentiellement entraver la succession, avec d'importantes implications pour le puits de carbone mondial et devraient donc être la plus haute priorité à considérer pour la gestion de la restauration.


Assuntos
Árvores , Clima Tropical , Árvores/fisiologia , Florestas , Sequestro de Carbono , Água
11.
Phys Chem Chem Phys ; 26(4): 3051-3059, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38180076

RESUMO

Neutron diffraction with isotopic substitution has been used to investigate the structure of the liquid sodium acetate trihydrate-urea eutectic (mole fraction (χurea) of 0.60) at 50 °C. Urea competes with acetate anions and water molecules in the solvation of sodium ions, displacing water and, simultaneously, stabilising the liberated 'excess' water through hydrogen bonding between water and urea molecules in the eutectic liquid. This provides a direct insight into the role of urea as both denaturant and hydrogen-bond network former in generating eutectic liquids.

12.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34001597

RESUMO

The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.


Assuntos
Mudança Climática , Floresta Úmida , Árvores/crescimento & desenvolvimento , Clima Tropical , Ciclo do Carbono , Secas , El Niño Oscilação Sul , Temperatura Alta , Humanos , Estações do Ano
13.
Arthroscopy ; 40(1): 136-145, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355187

RESUMO

PURPOSE: To investigate the biomechanical effects of tape-reinforced graft suturing and graft retensioning for all-soft tissue quadriceps tendon (ASTQT) anterior cruciate ligament reconstruction (ACLR) in a full-construct human cadaveric model. METHODS: Harvested cadaveric ASTQT grafts were assigned to either (1) double-suspensory adjustable-loop cortical button device (ALD) fixation in which both graft ends were fixed with a suspensory fixation device with (n = 5) or without (n = 5) tape-reinforced suturing or (2) single-suspensory distal tendon fixation in which only the patellar end was fixed with an ALD (n = 5) or fixed-loop cortical button device (FLD) (n = 5). All specimens were prepared using a No. 2 whipstitch technique, and tape-reinforced specimens had an integrated braided tape implant. Graft preparation time was recorded for double-suspensory constructs. Samples were tested on an electromechanical testing machine using a previously published protocol simulating rehabilitative kinematics and loading. RESULTS: Tape-reinforced graft suturing resulted in greater graft load retention after cycling (11.9% difference, P = .021), less total elongation (mean [95% confidence interval (CI)], 5.57 mm [3.50-7.65 mm] vs 32.14 mm [25.38-38.90 mm]; P < .001), greater ultimate failure stiffness (mean [95% CI], 171.9 N/mm [158.8-185.0 N/mm] vs 119.4 N/mm [108.7-130.0 N/mm]; P < .001), and less graft preparation time (36.4% difference, P < .001) when compared with unreinforced specimens. Retensioned ALD constructs had less cyclic elongation compared with FLD constructs (mean total elongation [95% CI], 7.04 mm [5.47-8.61 mm] vs 12.96 mm [8.67-17.26 mm]; P = .004). CONCLUSIONS: Tape-reinforced graft suturing improves time-zero ASTQT ACLR construct biomechanics in a cadaveric model with 83% less total elongation, 44% greater stiffness, and reduced preparation time compared with a whipstitched graft without tape reinforcement. ALD fixation improves construct mechanics when compared with FLD fixation as evidenced by 46% less total elongation. CLINICAL RELEVANCE: Tape-reinforced implants and graft retensioning using ALDs improve time-zero ACLR graft construct biomechanics in a time-zero biomechanical model. Clinical studies will be necessary to determine whether these implants improve clinical outcomes including knee laxity and the incidence of graft rupture.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Autoenxertos , Tendões/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Cadáver
14.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743552

RESUMO

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Assuntos
Embolia , Água Subterrânea , Água/fisiologia , Madeira/fisiologia , Xilema/fisiologia , Plantas , Folhas de Planta/fisiologia , Secas
15.
Glob Chang Biol ; 29(3): 827-840, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36270799

RESUMO

Forests contribute to climate change mitigation through carbon storage and uptake, but the extent to which this carbon pool varies in space and time is still poorly known. Several Earth Observation missions have been specifically designed to address this issue, for example, NASA's GEDI, NASA-ISRO's NISAR and ESA's BIOMASS. Yet, all these missions' products require independent and consistent validation. A permanent, global, in situ, site-based forest biomass reference measurement system relying on ground data of the highest possible quality is therefore needed. Here, we have assembled a list of almost 200 high-quality sites through an in-depth review of the literature and expert knowledge. In this study, we explore how representative these sites are in terms of their coverage of environmental conditions, geographical space and biomass-related forest structure, compared to those experienced by forests worldwide. This work also aims at identifying which sites are the most representative, and where to invest to improve the representativeness of the proposed system. We show that the environmental coverage of the system does not seem to improve after at least the 175 most representative sites are included, but geographical and structural coverages continue to improve as more sites are added. We highlight the areas of poor environmental, geographical, or structural coverage, including, but not limited to, Canada, the western half of the USA, Mexico, Patagonia, Angola, Zambia, eastern Russia, and tropical and subtropical highlands (e.g. in Colombia, the Himalayas, Borneo, Papua). For the proposed system to succeed, we stress that (1) data must be collected and processed applying the same standards across all countries and continents; (2) system establishment and management must be inclusive and equitable, with careful consideration of working conditions; and (3) training and site partner involvement in downstream activities should be mandatory.


Assuntos
Tecnologia de Sensoriamento Remoto , Árvores , Biomassa , Florestas , Carbono , Clima Tropical
16.
Am J Bot ; 110(4): e16146, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36826405

RESUMO

PREMISE: Understanding tree species' responses to drought is critical for predicting the future of tropical forests, especially in regions where the climate is changing rapidly. METHODS: We compared anatomical and functional traits of the dominant tree species of two tropical forests in southern Amazonia, one on deep, well-drained soils (cerradão [CD]) and one in a riparian environment (gallery forest [GF]), to examine potential anatomical indicators of resistance or vulnerability to drought. RESULTS: Leaves of CD species generally had a thicker cuticle, upper epidermis, and mesophyll than those of GF species, traits that are indicative of adaptation to water deficit. In the GF, the theoretical hydraulic conductivity of the stems was significantly higher, indicating lower investment in drought resistance. The anatomical functional traits of CD species indicate a greater potential for surviving water restriction compared to the GF. Even so, it is possible that CD species could also be affected by extreme climate changes due to the more water-limited environment. CONCLUSIONS: In addition to the marked anatomical and functional differences between these phytophysiognomies, tree diversity within each is associated with a large range of hydraulic morphofunctional niches. Our results suggest the strong potential for floristic and functional compositional shifts under continued climate change, especially in the GF.


Assuntos
Árvores , Água , Árvores/fisiologia , Água/fisiologia , Clima Tropical , Florestas , Secas , Folhas de Planta/fisiologia
17.
Philos Trans A Math Phys Eng Sci ; 381(2258): 20220352, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37634540

RESUMO

Laser-heated melts based on the 43CaO-57Fe2O3-x eutectic, close to the calcium ferrite (CF) composition, were measured with high-energy X-ray diffraction using aerodynamic levitation over a range of redox states controlled by CO/CO2 gas atmospheres. The iron-oxygen coordination number was found to rise from 4.4 ± 0.3 at 15% Fe3+ to 5.3 ± 0.3 at 87% Fe3+. Empirical potential structure refinement modelling was used to obtain the ferric and ferrous partial pair distribution functions. It was found that the Fe2+ iron-oxygen coordination number is consistently approximately 10% higher in CF than in pure iron oxide, while Fe3+ is essentially identical in all but the most oxygen-rich environments (where it is higher in CF compared with FeOx). The model also shows calcium octahedra to be the dominant species across all redox environments, although the population of CaO7 increases with the availability of oxygen at the expense of CaO4 and CaO5. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.

18.
BMC Public Health ; 23(1): 1097, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280549

RESUMO

BACKGROUND: The COVID-19 pandemic constitutes a social crisis that will have long-term health consequences for much of the global population, especially for adolescents. Adolescents are triply affected as they: 1) are experiencing its immediate, direct effects, 2) will carry forward health habits they develop now into adulthood, and 3) as future parents, will shape the early life health of the next generation. It is therefore imperative to assess how the pandemic is influencing adolescent wellbeing, identify sources of resilience, and outline strategies for attenuating its negative impacts. METHODS: We report the results of longitudinal analyses of qualitative data from 28 focus group discussions (FGDs) with 39 Canadian adolescents and of cross-sectional analyses of survey data from 482 Canadian adolescents gathered between September 2020 and August 2021. FGD participants and survey respondents reported on their: socio-demographic characteristics; mental health and wellbeing before and during the pandemic; pre- and during-pandemic health behaviours; experiences living through a crisis; current perceptions of their school, work, social, media, and governmental environments; and ideas about pandemic coping and mutual aid. We plotted themes emerging from FGDs along a pandemic timeline, noting socio-demographic variations. Following assessment for internal reliability and dimension reduction, quantitative health/wellbeing indicators were analyzed as functions of composite socio-demographic, health-behavioural, and health-environmental indicators. RESULTS: Our mixed methods analyses indicate that adolescents faced considerable mental and physical health challenges due to the pandemic, and were generally in poorer health than expected in non-crisis times. Nevertheless, some participants showed significantly better outcomes than others, specifically those who: got more exercise; slept better; were food secure; had clearer routines; spent more time in nature, deep in-person social relationships, and leisure; and spent less time on social media. CONCLUSIONS: Support for youth during times of crisis is essential to future population health because adolescence is a period in the life course which shapes the health behaviours, socio-economic capacities, and neurophysiology of these future parents/carers and leaders. Efforts to promote resilience in adolescents should leverage the factors identified above: helping them find structure and senses of purpose through strong social connections, well-supported work and leisure environments, and opportunities to engage with nature.


Assuntos
COVID-19 , Humanos , Adolescente , COVID-19/epidemiologia , Pandemias , Estudos Transversais , Reprodutibilidade dos Testes , Canadá/epidemiologia
19.
Sensors (Basel) ; 23(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37177647

RESUMO

X-ray photon counting spectral imaging (x-CSI) determines a detected photon's energy by comparing the charge it induces with several thresholds, counting how many times each is crossed (the standard method, STD). This paper is the first to demonstrate that this approach can unexpectedly delete counts from the recorded energy spectrum under some clinically relevant conditions: a process we call negative counting. Four alternative counting schemes are proposed and simulated for a wide range of sensor geometries (pixel pitch 100-600 µm, sensor thickness 1-3 mm), number of thresholds (3, 5, 8, 24 and 130) and medically relevant X-ray fluxes (106-109 photons mm-2 s-1). Spectral efficiency and counting efficiency are calculated for each simulation. Performance gains are explained mechanistically and correlated well with the improved suppression of "negative counting". The best performing scheme (Shift Register, SR) entirely eliminates negative counting, remaining close to an ideal scheme at fluxes of up to 108 photons mm-2 s-1. At the highest fluxes considered, the deviation from ideal behaviour is reduced by 2/3 in SR compared with STD. The results have significant implications both for generally improving spectral fidelity and as a possible path toward the 109 photons mm-2 s-1 goal in photon-counting CT.

20.
Plant Cell Environ ; 45(6): 1682-1697, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297062

RESUMO

Using a population of recombinant inbred lines (RILs) cowpea (Vigna unguiculata. L. Walp), we tested for co-linkages between lipid contents and chilling responses of photosynthesis. Under low-temperature conditions (19°C/13°C, day/night), we observed co-linkages between quantitative trait loci intervals for photosynthetic light reactions and specific fatty acids, most strikingly, the thylakoid-specific fatty acid 16:1Δ3trans found exclusively in phosphatidylglycerol (PG 16:1t). By contrast, we did not observe co-associations with bulk polyunsaturated fatty acids or high-melting-point-PG (sum of PG 16:0, PG 18:0 and PG 16:1t) previously thought to be involved in chilling sensitivity. These results suggest that in cowpea, chilling sensitivity is modulated by specific lipid interactions rather than bulk properties. We were able to recapitulate the predicted impact of PG 16:1t levels on photosynthetic responses at low temperature using mutants and transgenic Arabidopsis lines. Because PG 16:1t synthesis requires the activity of peroxiredoxin-Q, which is activated by H2 O2 and known to be involved in redox signalling, we hypothesise that the accumulation of PG 16:1t occurs as a result of upstream effects on photosynthesis that alter redox status and production of reactive oxygen species.


Assuntos
Arabidopsis , Vigna , Arabidopsis/genética , Temperatura Baixa , Ácidos Graxos/metabolismo , Fotossíntese , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA