RESUMO
Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4-6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically 'cold' tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone-a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma-generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma.
Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Glioblastoma/imunologia , Glioblastoma/terapia , Linfócitos T/imunologia , Adulto , Idoso , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dexametasona/administração & dosagem , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Supressoras de Tumor/genética , Adulto JovemRESUMO
Mass cytometry enables the measurement of up to 50 features on single cell. This has catalyzed a shift toward multidimensional data analysis methods, rather than the manual gating strategies as traditionally for in flow cytometry data. This shift means that data scientists are involved in the analysis process to an increasing degree. As the data is analyzed in a more unbiased fashion, where noisy or uninformative observations are not easily excluded, a deeper knowledge of the origin, noise, and modalities of the data is therefore needed to embark on useful data analysis. In this primer, we introduce the idiosyncrasies of mass cytometry data with a focus on the technical properties of how data generated with the CyTOF® system, and the characteristics of protein expression in the cells of the hematopoietic continuum, specifically targeted toward data scientists. We also provide a comprehensive online repository of scripts, tutorials, and example data. © 2018 International Society for Advancement of Cytometry.
Assuntos
Citometria de Fluxo/métodos , Análise de Célula Única/métodos , Animais , Humanos , Proteínas/metabolismoRESUMO
Semaphorin-3A (SEMA3A) functions as a chemorepulsive signal during development and can affect T cells by altering their filamentous actin (F-actin) cytoskeleton. The exact extent of these effects on tumour-specific T cells are not completely understood. Here we demonstrate that Neuropilin-1 (NRP1) and Plexin-A1 and Plexin-A4 are upregulated on stimulated CD8+ T cells, allowing tumour-derived SEMA3A to inhibit T cell migration and assembly of the immunological synapse. Deletion of NRP1 in both CD4+ and CD8+ T cells enhance CD8+ T-cell infiltration into tumours and restricted tumour growth in animal models. Conversely, over-expression of SEMA3A inhibit CD8+ T-cell infiltration. We further show that SEMA3A affects CD8+ T cell F-actin, leading to inhibition of immune synapse formation and motility. Examining a clear cell renal cell carcinoma patient cohort, we find that SEMA3A expression is associated with reduced survival, and that T-cells appear trapped in SEMA3A rich regions. Our study establishes SEMA3A as an inhibitor of effector CD8+ T cell tumour infiltration, suggesting that blocking NRP1 could improve T cell function in tumours.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Actinas , Linfócitos T CD8-Positivos , Citoesqueleto , Semaforina-3A/genéticaRESUMO
Cancers avoid immune surveillance through an array of mechanisms, including perturbation of HLA class I antigen presentation. Merkel cell carcinoma (MCC) is an aggressive, HLA-I-low, neuroendocrine carcinoma of the skin often caused by the Merkel cell polyomavirus (MCPyV). Through the characterization of 11 newly generated MCC patient-derived cell lines, we identified transcriptional suppression of several class I antigen presentation genes. To systematically identify regulators of HLA-I loss in MCC, we performed parallel, genome-scale, gain- and loss-of-function screens in a patient-derived MCPyV-positive cell line and identified MYCL and the non-canonical Polycomb repressive complex 1.1 (PRC1.1) as HLA-I repressors. We observed physical interaction of MYCL with the MCPyV small T viral antigen, supporting a mechanism of virally mediated HLA-I suppression. We further identify the PRC1.1 component USP7 as a pharmacologic target to restore HLA-I expression in MCC.
Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/patologia , Epigênese Genética , Humanos , Poliomavírus das Células de Merkel/genética , Poliomavírus das Células de Merkel/metabolismo , Infecções por Polyomavirus/genética , Neoplasias Cutâneas/patologia , Peptidase 7 Específica de Ubiquitina/metabolismoRESUMO
HIV-2 is less pathogenic compared to HIV-1. Still, disease progression may develop in aviremic HIV-2 infection, but the driving forces and mechanisms behind such development are unclear. Here, we aimed to reveal the immunophenotypic pattern associated with CD8 T-cell pathology in HIV-2 infection, in relation to viremia and markers of disease progression. The relationships between pathological differences of the CD8 T-cell memory population and viremia were analyzed in blood samples obtained from an occupational cohort in Guinea-Bissau, including HIV-2 viremic and aviremic individuals. For comparison, samples from HIV-1- or dually HIV-1/2-infected and seronegative individuals were obtained from the same cohort. CD8 T-cell exhaustion was evaluated by the combined expression patterns of activation, stimulatory and inhibitory immune checkpoint markers analyzed using multicolor flow cytometry and advanced bioinformatics. Unsupervised multidimensional clustering analysis identified a cluster of late differentiated CD8 T-cells expressing activation (CD38+, HLA-DRint/high), co-stimulatory (CD226+/-), and immune inhibitory (2B4+, PD-1high, TIGIThigh) markers that distinguished aviremic from viremic HIV-2, and treated from untreated HIV-1-infected individuals. This CD8 T-cell population displayed close correlations to CD4%, viremia, and plasma levels of IP-10, sCD14 and beta-2 microglobulin in HIV-2 infection. Detailed analysis revealed that aviremic HIV-2-infected individuals had higher frequencies of exhausted TIGIT+ CD8 T-cell populations lacking CD226, while reduced percentage of stimulation-receptive TIGIT-CD226+ CD8 T-cells, compared to seronegative individuals. Our results suggest that HIV-2 infection, independent of viremia, skews CD8 T-cells towards exhaustion and reduced co-stimulation readiness. Further knowledge on CD8 T-cell phenotypes might provide help in therapy monitoring and identification of immunotherapy targets.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-2/imunologia , Imunossenescência/imunologia , Adulto , Feminino , Soronegatividade para HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Viremia/imunologiaRESUMO
BACKGROUND: Megakaryocytes (MKs) originate from cells immuno-phenotypically indistinguishable from hematopoietic stem cells (HSCs), bypassing intermediate progenitors. They mature within the adult bone marrow and release platelets into the circulation. Until now, there have been no transcriptional studies of primary human bone marrow MKs. OBJECTIVES: To characterize MKs and HSCs from human bone marrow using single-cell RNA sequencing, to investigate MK lineage commitment, maturation steps, and thrombopoiesis. RESULTS: We show that MKs at different levels of polyploidization exhibit distinct transcriptional states. Although high levels of platelet-specific gene expression occur in the lower ploidy classes, as polyploidization increases, gene expression is redirected toward translation and posttranslational processing transcriptional programs, in preparation for thrombopoiesis. Our findings are in keeping with studies of MK ultrastructure and supersede evidence generated using in vitro cultured MKs. Additionally, by analyzing transcriptional signatures of a single HSC, we identify two MK-biased HSC subpopulations exhibiting unique differentiation kinetics. We show that human bone marrow MKs originate from these HSC subpopulations, supporting the notion that they display priming for MK differentiation. Finally, to investigate transcriptional changes in MKs associated with stress thrombopoiesis, we analyzed bone marrow MKs from individuals with recent myocardial infarction and found a specific gene expression signature. Our data support the modulation of MK differentiation in this thrombotic state. CONCLUSIONS: Here, we use single-cell sequencing for the first time to characterize the human bone marrow MK transcriptome at different levels of polyploidization and investigate their differentiation from the HSC.
Assuntos
Megacariócitos , Trombopoese , Plaquetas , Medula Óssea , Diferenciação Celular , Humanos , Trombopoese/genéticaRESUMO
Depleting the microenvironment of important nutrients such as arginine is a key strategy for immune evasion by cancer cells. Many tumors overexpress arginase, but it is unclear how these cancers, but not T cells, tolerate arginine depletion. In this study, we show that tumor cells synthesize arginine from citrulline by upregulating argininosuccinate synthetase 1 (ASS1). Under arginine starvation, ASS1 transcription is induced by ATF4 and CEBPß binding to an enhancer within ASS1. T cells cannot induce ASS1, despite the presence of active ATF4 and CEBPß, as the gene is repressed. Arginine starvation drives global chromatin compaction and repressive histone methylation, which disrupts ATF4/CEBPß binding and target gene transcription. We find that T cell activation is impaired in arginine-depleted conditions, with significant metabolic perturbation linked to incomplete chromatin remodeling and misregulation of key genes. Our results highlight a T cell behavior mediated by nutritional stress, exploited by cancer cells to enable pathological immune evasion.
Assuntos
Arginina/metabolismo , Cromatina/metabolismo , Evasão da Resposta Imune/genética , Neoplasias/genética , Linfócitos T/metabolismo , Animais , HumanosRESUMO
The tumor immune microenvironment plays a critical role in cancer progression and response to immunotherapy in clear cell renal cell carcinoma (ccRCC), yet the composition and phenotypic states of immune cells in this tumor are incompletely characterized. We performed single-cell RNA and T cell receptor sequencing on 164,722 individual cells from tumor and adjacent non-tumor tissue in patients with ccRCC across disease stages: early, locally advanced, and advanced/metastatic. Terminally exhausted CD8+ T cells were enriched in metastatic disease and were restricted in T cell receptor diversity. Within the myeloid compartment, pro-inflammatory macrophages were decreased, and suppressive M2-like macrophages were increased in advanced disease. Terminally exhausted CD8+ T cells and M2-like macrophages co-occurred in advanced disease and expressed ligands and receptors that support T cell dysfunction and M2-like polarization. This immune dysfunction circuit is associated with a worse prognosis in external cohorts and identifies potentially targetable immune inhibitory pathways in ccRCC.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Renais/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Renais/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Imunoterapia/métodos , Neoplasias Renais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/metabolismo , Microambiente Tumoral/imunologiaRESUMO
The CyTOF system produces single cell protein expression data similar to that from flow cytometry, but with an increased number of features measured. Traditionally, analysis of these data is carried out using manual gating, but with the increased dimensionality, manual gating becomes a suboptimal analysis strategy in some cases. To address this, a number of data analysis tools for tasks such as clustering, differential abundance analysis, and visualization have been developed and made freely available. We here introduce some of the more popular tools for CyTOF analysis and exemplify their utility in a common analysis workflow.
Assuntos
Algoritmos , Biologia Computacional/métodos , Citometria de Fluxo/métodos , Espectrometria de Massas/métodos , Análise por Conglomerados , Humanos , Fluxo de TrabalhoRESUMO
For more than five years, high-dimensional mass cytometry has been employed to study immunology. However, these studies have typically been performed in one laboratory on one or few instruments. We present the results of a six-center study using healthy control human peripheral blood mononuclear cells (PBMCs) and commercially available reagents to test the intra-site and inter-site variation of mass cytometers and operators. We used prestained controls generated by the primary center as a reference to compare against samples stained at each individual center. Data were analyzed at the primary center, including investigating the effects of two normalization methods. All six sites performed similarly, with CVs for both Frequency of Parent and median signal intensity (MSI) values<30%. Increased background was seen when using the premixed antibody cocktail aliquots at each site, suggesting that cocktails are best made fresh. Both normalization methods tested performed adequately for normalizing MSI values between centers. Clustering algorithms revealed slight differences between the prestained and the sites-stained samples, due mostly to the increased background of a few antibodies. Therefore, we believe that multicenter mass cytometry assays are feasible.
Assuntos
Citometria de Fluxo/métodos , Leucócitos Mononucleares/fisiologia , Espectrometria de Massas/métodos , Anticorpos/metabolismo , Voluntários Saudáveis , Humanos , Imunofenotipagem , Projetos Piloto , Padrões de ReferênciaRESUMO
Tryptophan degradation is an immune escape strategy shared by many tumors. However, cancer cells' compensatory mechanisms remain unclear. We demonstrate here that a shortage of tryptophan caused by expression of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) resulted in ATF4-dependent upregulation of several amino acid transporters, including SLC1A5 and its truncated isoforms, which in turn enhanced tryptophan and glutamine uptake. Importantly, SLC1A5 failed to be upregulated in resting human T cells kept under low tryptophan conditions but was enhanced upon cognate antigen T-cell receptor engagement. Our results highlight key differences in the ability of tumor and T cells to adapt to tryptophan starvation and provide important insights into the poor prognosis of tumors coexpressing IDO and SLC1A5. Cancer Res; 76(21); 6193-204. ©2016 AACR.
Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Sistema ASC de Transporte de Aminoácidos/fisiologia , Sistemas de Transporte de Aminoácidos/genética , Reprogramação Celular , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Neoplasias/metabolismo , Triptofano/metabolismo , Linhagem Celular Tumoral , HumanosRESUMO
BACKGROUND: Computational methods for T cell-based vaccine target discovery focus on selection of highly conserved peptides identified across pathogen variants, followed by prediction of their binding of human leukocyte antigen molecules. However, experimental studies have shown that T cells often target diverse regions in highly variable viral pathogens and this diversity may need to be addressed through redefinition of suitable peptide targets. METHODS: We have developed a method for antigen assessment and target selection for polyvalent vaccines, with which we identified immune epitopes from variable regions, where all variants bind HLA. These regions, although variable, can thus be considered stable in terms of HLA binding and represent valuable vaccine targets. RESULTS: We applied this method to predict CD8+ T-cell targets in influenza A H7N9 hemagglutinin and significantly increased the number of potential vaccine targets compared to the number of targets discovered using the traditional approach where low-frequency peptides are excluded. CONCLUSIONS: We developed a webserver with an intuitive visualization scheme for summarizing the T cell-based antigenic potential of any given protein or proteome using human leukocyte antigen binding predictions and made a web-accessible software implementation freely available at http://met-hilab.cbs.dtu.dk/blockcons/.