Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomolecules ; 13(2)2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36830618

RESUMO

Tubulin is a protein that plays a critical role in maintaining cellular structure and facilitating cell division. Inhibiting tubulin polymerization has been shown to be an effective strategy for inhibiting the proliferation of cancer cells. In the past, identifying compounds that could inhibit tubulin polymerization has required the use of in vitro assays utilizing purified tubulin or immunofluorescence of fixed cells. This study presents a novel approach for identifying tubulin polymerization inhibitors using a CRISPR-edited cell line that expresses fluorescently tagged ß-tubulin and a nuclear protein, enabling the visualization of tubulin polymerization dynamics via high-content imaging analysis (HCI). The cells were treated with known tubulin polymerization inhibitors, colchicine, and vincristine, and the resulting phenotypic changes indicative of tubulin polymerization inhibition were confirmed using HCI. Furthermore, a library of 429 kinase inhibitors was screened, resulting in the identification of three compounds (ON-01910, HMN-214, and KX2-391) that inhibit tubulin polymerization. Live cell tracking analysis confirmed that compound treatment leads to rapid tubulin depolymerization. These findings suggest that CRISPR-edited cells with fluorescently tagged endogenous ß-tubulin can be utilized to screen large compound libraries containing diverse chemical families for the identification of novel tubulin polymerization inhibitors.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Histonas/metabolismo , Polimerização , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Linhagem Celular , Antineoplásicos/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Estrutura Molecular
2.
Antioxidants (Basel) ; 12(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37507903

RESUMO

With the rising prevalence of obesity, non-alcoholic fatty liver disease (NAFLD) now affects 20-25% of the global population. NAFLD, a progressive condition associated with oxidative stress, can result in cirrhosis and liver cancer in 10% and 3% of patients suffering NAFLD, respectively. Therapeutic options are currently limited, emphasizing the need for novel treatments. In this study, we examined the potential of activating the transcription factor NRF2, a crucial player in combating oxidative stress, as an innovative approach to treating NAFLD. Utilizing a CRISPR/Cas9-engineered human HEK293T cell line, we were able to monitor the expression of heme oxygenase-1 (HMOX1), an NRF2 target, using a Nanoluc luciferase tag. Our model was validated using a known NRF2 activator, after which we screened 1200 FDA-approved drugs, unearthing six compounds (Disulfiram, Thiostrepton, Auranofin, Thimerosal, Halofantrine, and Vorinostat) that enhanced NRF2 activity and antioxidant response. These compounds demonstrated protective effects against oxidative stress induced by hydrogen peroxide and lipid droplets accumulation in vitro with hepatoma HUH-7 cells. Our study underscores the utility of CRISPR/Cas9 tagging with Nanoluc luciferase in identifying potential NRF2 activators, paving the way for potential NAFLD therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA