Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropathology ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105501

RESUMO

N-myc downstream regulated gene 1 (NDRG1) is a member of the NDRG family, of which four members (NDRG1, NDRG2, NDRG3, and NDRG4) have been identified. NDRG1 is repressed by c-MYC and N-MYC proto-oncogenes. NDRG1 is translated into a 43 kDa protein that is associated with the regulation of cellular stress responses, proliferation, and differentiation. In this study, we aimed to clarify the relationship between progression of glioblastoma (GB) IDH-wildtype and NDRG1 expression in tumor cells. We assessed the expression of NDRG1 in 41 GBs using immunostaining and evaluated its prognostic significance. NDRG1 expression by GBs was evaluated using Histoscore, which showed high and low scores in 23 and 18 cases, respectively. NDRG1-positive cells were strongly expressed in Ki-67 labeled proliferating tumor cells and CD105 positive proliferating microvessels around the area of palisading necrosis. Statistical analyses showed lower survival rates in the high-score group than the low-score group (P < 0.01). This study indicated that overexpression of NDRG1 by GB reflects tumor angiogenesis and poor patient prognosis.

2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731802

RESUMO

5-azacytidine (AZA), a representative DNA-demethylating drug, has been widely used to treat myelodysplastic syndromes (MDS). However, it remains unclear whether AZA's DNA demethylation of any specific gene is correlated with clinical responses to AZA. In this study, we investigated genes that could contribute to the development of evidence-based epigenetic therapeutics with AZA. A DNA microarray identified that AZA specifically upregulated the expression of 438 genes in AZA-sensitive MDS-L cells but not in AZA-resistant counterpart MDS-L/CDA cells. Of these 438 genes, the ALOX12 gene was hypermethylated in MDS-L cells but not in MDS-L/CDA cells. In addition, we further found that (1) the ALOX12 gene was hypermethylated in patients with MDS compared to healthy controls; (2) MDS classes with excess blasts showed a relatively lower expression of ALOX12 than other classes; (3) a lower expression of ALOX12 correlated with higher bone marrow blasts and a shorter survival in patients with MDS; and (4) an increased ALOX12 expression after AZA treatment was associated with a favorable response to AZA treatment. Taking these factors together, an enhanced expression of the ALOX12 gene may predict favorable therapeutic responses to AZA therapy in MDS.


Assuntos
Araquidonato 12-Lipoxigenase , Azacitidina , Metilação de DNA , Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Azacitidina/uso terapêutico , Azacitidina/farmacologia , Masculino , Feminino , Metilação de DNA/efeitos dos fármacos , Idoso , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Adulto
3.
Cancers (Basel) ; 16(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38539518

RESUMO

Precise biomarkers for predicting the therapeutic efficacy of molecularly targeted drugs are limited at the protein level; thus, it has been important to broadly scrutinize individual cancer driver gene mutations for effective cancer treatments. Multiplex cancer genome profiling can comprehensively identify gene mutations that are therapeutic targets using next-generation sequencing (NGS). In addition, circulating tumor DNA (ctDNA) is a DNA fragment released into the blood by tumor cell-derived cell death or apoptosis. Liquid biopsy with ctDNA is a novel clinical test for identifying genetic mutations in an entire population noninvasively, in real-time, and heterogeneously. Although there are several reports on ctDNA, fewer have evaluated ctDNA with NGS before an initial treatment for breast cancer patients. Therefore, we examined whether analyzing tumor-associated gene mutations in primary breast cancer based on ctDNA could serve as a biomarker for prognosis and optimal treatment selection. Ninety-five primary breast cancer patients treated at our department from January 2017 to October 2020 were included. Pretreatment plasma samples were subjected to NGS analysis of ctDNA, and correlations with patients' clinicopathological characteristics were evaluated. Fifty-nine (62.1%) patients were positive for ctDNA. ctDNA tended to be positive in hormone receptor-negative, and TP53 (34%), BRCA1 (20%), and BRCA2 (17%) gene mutations were more frequent. Regarding recurrence-free survival, the prognosis was poor in the TP53 and/or BRCA1 mutation-positive groups, especially in triple-negative breast cancer (TNBC) patients. In conclusion, the results of this study indicate that ctDNA with liquid biopsy could identify the poor prognosis group before treatment among TNBC patients and for those for whom optimal treatment selection is desirable; additionally, optimal treatment could be selected according to the ctDNA analysis results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA