Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 107(11): 3370-3377, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37163310

RESUMO

Diplodia sapinea is a globally distributed opportunistic fungal pathogen of conifers that causes severe production losses in forestry. The fungus frequently colonizes pine trees as an endophyte without causing visible symptoms but can become pathogenic when the host plant is weakened by stress, such as drought or heat. Forest damage might therefore further increase due to the effects of climate change. The future development of control strategies depends on a better understanding of the fungus' biology, which requires experimental methods for its investigation in the laboratory. An efficient, standardized protocol for the production and storage of highly viable pycnidiospores was developed, and a spore-based infection method was devised. We compared infection rates of dormant and actively growing, wounded, or nonwounded Scots pine seedlings inoculated with in vitro-produced spores and mycelium from agar-plugs. Spores were a much more efficient inoculum for causing disease symptoms on wounded plants than the conventional agar plug. The application of spores on nonwounded plants lead to high rates of asymptomatic infection, suggesting endophytic fungal development. These methods enable standardized spore infection and virulence assays and promote D. sapinea as a model organism for studying the switch from endophytic to pathogenic life styles of forest pathogens.


Assuntos
Pinus , Doenças das Plantas , Ágar , Doenças das Plantas/microbiologia , Pinus/microbiologia , Esporos
2.
Curr Opin Cell Biol ; 79: 102140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36347130

RESUMO

The development of ascomycete fungal colonies involves cell-cell fusion at different growth stages. In the model fungus Neurospora crassa, communication of two fusing cells is mediated by an unusual signaling mechanism, in which the two partners take turns in signal sending and receiving. In recent years, the molecular basis of this unusual cellular behavior has started to unfold, indicating the presence of an excitable signaling network. New evidence suggests that this communication system is highly conserved in ascomycete fungi and, unexpectedly, even mediates interspecies interactions. At the same time, intricate allorecognition mechanisms were identified, which prevent the fusion of genetically unlike individuals. These observations suggest that signal specificity during fungal social behavior has not evolved on the level of signals and receptors, but is achieved at downstream checkpoints. Despite growing insight into the molecular mechanisms controlling self and non-self fungal interactions, their role in natural environments remains largely unknown.


Assuntos
Proteínas Fúngicas , Neurospora crassa , Humanos , Fusão Celular , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Comunicação Celular , Fungos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA