Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 141(11): 1723-1738, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35226187

RESUMO

Usher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.


Assuntos
Retinose Pigmentar , Síndromes de Usher , Arilsulfatases , Humanos , Proteínas Mutantes , Retinose Pigmentar/genética , Sulfatases , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
2.
Hum Genet ; 141(3-4): 465-484, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34410491

RESUMO

Pathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype-phenotype correlation, a significant part of cases remains genetically unresolved. In this study, we investigated a cohort of 28 Dutch index cases diagnosed with HL in combination with an EVA but without (M0) or with a single (M1) pathogenic variant in SLC26A4. To explore the missing heritability, we first determined the presence of the previously described EVA-associated haplotype (Caucasian EVA (CEVA)), characterized by 12 single nucleotide variants located upstream of SLC26A4. We found this haplotype and a delimited V1-CEVA haplotype to be significantly enriched in our M1 patient cohort (10/16 cases). The CEVA haplotype was also present in two M0 cases (2/12). Short- and long-read whole genome sequencing and optical genome mapping could not prioritize any of the variants present within the CEVA haplotype as the likely pathogenic defect. Short-read whole-genome sequencing of the six M1 cases without this haplotype and the two M0/CEVA cases only revealed previously overlooked or misinterpreted splice-altering SLC26A4 variants in two cases, who are now genetically explained. No deep-intronic or structural variants were identified in any of the M1 subjects. With this study, we have provided important insights that will pave the way for elucidating the missing heritability in M0 and M1 SLC26A4 cases. For pinpointing the pathogenic effect of the CEVA haplotype, additional analyses are required addressing defect(s) at the RNA, protein, or epigenetic level.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Mutação , Fenótipo , Transportadores de Sulfato/genética , Aqueduto Vestibular/anormalidades
3.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362125

RESUMO

Non-canonical splice site variants are increasingly recognized as a relevant cause of the USH2A-associated diseases, non-syndromic autosomal recessive retinitis pigmentosa and Usher syndrome type 2. Many non-canonical splice site variants have been reported in public databases, but an effect on pre-mRNA splicing has only been functionally verified for a subset of these variants. In this study, we aimed to extend the knowledge regarding splicing events by assessing a selected set of USH2A non-canonical splice site variants and to study their potential pathogenicity. Eleven non-canonical splice site variants were selected based on four splice prediction tools. Ten different USH2A constructs were generated and minigene splice assays were performed in HEK293T cells. An effect on pre-mRNA splicing was observed for all 11 variants. Various events, such as exon skipping, dual exon skipping and partial exon skipping were observed and eight of the tested variants had a full effect on splicing as no conventionally spliced mRNA was detected. We demonstrated that non-canonical splice site variants in USH2A are an important contributor to the genetic etiology of the associated disorders. This type of variant generally should not be neglected in genetic screening, both in USH2A-associated disease as well as other hereditary disorders. In addition, cases with these specific variants may now receive a conclusive genetic diagnosis.


Assuntos
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Células HEK293 , Precursores de RNA , Proteínas da Matriz Extracelular/genética , Mutação , Sítios de Splice de RNA/genética
4.
Am J Hum Genet ; 103(1): 74-88, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29961571

RESUMO

In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs∗22). By screening a cohort of phenotype-matched subjects and a cohort of HI subjects in whom WES had been performed previously, we identified two additional families with biallelic truncating variants of MPZL2. Affected individuals demonstrated symmetric, progressive, mild to moderate sensorineural HI. Onset of HI was in the first decade, and high-frequency hearing was more severely affected. There was no vestibular involvement. MPZL2 encodes myelin protein zero-like 2, an adhesion molecule that mediates epithelial cell-cell interactions in several (developing) tissues. Involvement of MPZL2 in hearing was confirmed by audiometric evaluation of Mpzl2-mutant mice. These displayed early-onset progressive sensorineural HI that was more pronounced in the high frequencies. Histological analysis of adult mutant mice demonstrated an altered organization of outer hair cells and supporting cells and degeneration of the organ of Corti. In addition, we observed mild degeneration of spiral ganglion neurons, and this degeneration was most pronounced at the cochlear base. Although MPZL2 is known to function in cell adhesion in several tissues, no phenotypes other than HI were found to be associated with MPZL2 defects. This indicates that MPZL2 has a unique function in the inner ear. The present study suggests that deleterious variants of Mplz2/MPZL2 affect adhesion of the inner-ear epithelium and result in loss of structural integrity of the organ of Corti and progressive degeneration of hair cells, supporting cells, and spiral ganglion neurons.


Assuntos
Moléculas de Adesão Celular/genética , Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/genética , Audição/genética , Animais , Adesão Celular/genética , Cóclea/patologia , Surdez/genética , Epitélio/patologia , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Neurônios/patologia , Gânglio Espiral da Cóclea/patologia
5.
J Med Genet ; 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631815

RESUMO

BACKGROUND: Hearing loss is one of the most prevalent disabilities worldwide, and has a significant impact on quality of life. The adult-onset type of the condition is highly heritable but the genetic causes are largely unknown, which is in contrast to childhood-onset hearing loss. METHODS: Family and cohort studies included exome sequencing and characterisation of the hearing phenotype. Ex vivo protein expression addressed the functional effect of a DNA variant. RESULTS: An in-frame deletion of 12 nucleotides in RIPOR2 was identified as a highly penetrant cause of adult-onset progressive hearing loss that segregated as an autosomal dominant trait in 12 families from the Netherlands. Hearing loss associated with the deletion in 63 subjects displayed variable audiometric characteristics and an average (SD) age of onset of 30.6 (14.9) years (range 0-70 years). A functional effect of the RIPOR2 variant was demonstrated by aberrant localisation of the mutant RIPOR2 in the stereocilia of cochlear hair cells and failure to rescue morphological defects in RIPOR2-deficient hair cells, in contrast to the wild-type protein. Strikingly, the RIPOR2 variant is present in 18 of 22 952 individuals not selected for hearing loss in the Southeast Netherlands. CONCLUSION: Collectively, the presented data demonstrate that an inherited form of adult-onset hearing loss is relatively common, with potentially thousands of individuals at risk in the Netherlands and beyond, which makes it an attractive target for developing a (genetic) therapy.

6.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203967

RESUMO

A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.


Assuntos
Análise Custo-Benefício , Éxons/genética , Proteínas da Matriz Extracelular/genética , Sondas Moleculares/metabolismo , Sítios de Splice de RNA/genética , Retinose Pigmentar/genética , Análise de Sequência de DNA , Síndromes de Usher/genética , Sequência de Bases , Variações do Número de Cópias de DNA/genética , Deleção de Genes , Humanos , Polimorfismo de Nucleotídeo Único/genética , Retinose Pigmentar/economia , Síndromes de Usher/economia
7.
Hum Genet ; 138(1): 61-72, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30535804

RESUMO

ATP2B2 encodes the PMCA2 Ca2+ pump that plays an important role in maintaining ion homeostasis in hair cells among others by extrusion of Ca2+ from the stereocilia to the endolymph. Several mouse models have been described for this gene; mice heterozygous for loss-of-function defects display a rapidly progressive high-frequency hearing impairment. Up to now ATP2B2 has only been reported as a modifier, or in a digenic mechanism with CDH23 for hearing impairment in humans. Whole exome sequencing in hearing impaired index cases of Dutch and Polish origins revealed five novel heterozygous (predicted to be) loss-of-function variants of ATP2B2. Two variants, c.1963G>T (p.Glu655*) and c.955delG (p.Ala319fs), occurred de novo. Three variants c.397+1G>A (p.?), c.1998C>A (p.Cys666*), and c.2329C>T (p.Arg777*), were identified in families with an autosomal dominant inheritance pattern of hearing impairment. After normal newborn hearing screening, a rapidly progressive high-frequency hearing impairment was diagnosed at the age of about 3-6 years. Subjects had no balance complaints and vestibular testing did not yield abnormalities. There was no evidence for retrocochlear pathology or structural inner ear abnormalities. Although a digenic inheritance pattern of hearing impairment has been reported for heterozygous missense variants of ATP2B2 and CDH23, our findings indicate a monogenic cause of hearing impairment in cases with loss-of-function variants of ATP2B2.


Assuntos
Biomarcadores/análise , Predisposição Genética para Doença , Perda Auditiva/genética , Mutação , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Seguimentos , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Adulto Jovem
8.
Hum Genet ; 137(5): 389-400, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29754270

RESUMO

Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein-protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families.


Assuntos
Perda Auditiva/genética , Heterozigoto , Proteínas com Homeodomínio LIM/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Doenças Vestibulares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Am J Hum Genet ; 97(5): 647-60, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26522471

RESUMO

Linkage analysis combined with whole-exome sequencing in a large family with congenital and stable non-syndromic unilateral and asymmetric hearing loss (NS-UHL/AHL) revealed a heterozygous truncating mutation, c.286_303delinsT (p.Ser96Ter), in KITLG. This mutation co-segregated with NS-UHL/AHL as a dominant trait with reduced penetrance. By screening a panel of probands with NS-UHL/AHL, we found an additional mutation, c.200_202del (p.His67_Cys68delinsArg). In vitro studies revealed that the p.His67_Cys68delinsArg transmembrane isoform of KITLG is not detectable at the cell membrane, supporting pathogenicity. KITLG encodes a ligand for the KIT receptor. Also, KITLG-KIT signaling and MITF are suggested to mutually interact in melanocyte development. Because mutations in MITF are causative of Waardenburg syndrome type 2 (WS2), we screened KITLG in suspected WS2-affected probands. A heterozygous missense mutation, c.310C>G (p.Leu104Val), that segregated with WS2 was identified in a small family. In vitro studies revealed that the p.Leu104Val transmembrane isoform of KITLG is located at the cell membrane, as is wild-type KITLG. However, in culture media of transfected cells, the p.Leu104Val soluble isoform of KITLG was reduced, and no soluble p.His67_Cys68delinsArg and p.Ser96Ter KITLG could be detected. These data suggest that mutations in KITLG associated with NS-UHL/AHL have a loss-of-function effect. We speculate that the mechanism of the mutation underlying WS2 and leading to membrane incorporation and reduced secretion of KITLG occurs via a dominant-negative or gain-of-function effect. Our study unveils different phenotypes associated with KITLG, previously associated with pigmentation abnormalities, and will thereby improve the genetic counseling given to individuals with KITLG variants.


Assuntos
Ligação Genética , Perda Auditiva Unilateral/genética , Mutação/genética , Fator de Células-Tronco/genética , Síndrome de Waardenburg/genética , Alelos , Animais , Feminino , Imunofluorescência , Perda Auditiva Unilateral/metabolismo , Perda Auditiva Unilateral/patologia , Humanos , Masculino , Camundongos , Células NIH 3T3 , Linhagem , Fenótipo , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Síndrome de Waardenburg/metabolismo , Síndrome de Waardenburg/patologia
10.
PLoS Genet ; 11(7): e1005386, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26197441

RESUMO

Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more than eighty known causative genes. However, in the clinical setting, a large number of NSHI families have unexplained etiology, suggesting that there are many more genes to be identified. In this study we used SNP-based linkage analysis and follow up microsatellite markers to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish family with dominantly inherited NSHI. By locus specific capture and next-generation sequencing, we identified a c.574C>T heterozygous nonsense mutation (p.R192*) in CD164. This gene encodes a 197 amino acid transmembrane sialomucin (known as endolyn, MUC-24 or CD164), which is widely expressed and involved in cell adhesion and migration. The mutation segregated with the phenotype and was absent in 1200 Danish control individuals and in databases with whole-genome and exome sequence data. The predicted effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic tail of CD164, including a highly conserved canonical sorting motif (YXXФ). In whole blood from an affected individual, we found by RT-PCR both the wild-type and the mutated transcript suggesting that the mutant transcript escapes nonsense mediated decay. Functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments, implicating failed endocytosis as a possible disease mechanism. In the mouse ear, we found CD164 expressed in the inner and outer hair cells of the organ of Corti, as well as in other locations in the cochlear duct. In conclusion, we have identified a new DFNA locus located on chromosome 6q15-21 and implicated CD164 as a novel gene for hearing impairment.


Assuntos
Endolina/genética , Animais , Sequência de Bases , Linhagem Celular , Códon sem Sentido/genética , Surdez/genética , Dinamarca , Família , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Repetições de Microssatélites/genética , Órgão Espiral/metabolismo , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
12.
Am J Hum Genet ; 91(4): 636-45, 2012 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-22981119

RESUMO

CaBPs are a family of Ca(2+)-binding proteins related to calmodulin and are localized in the brain and sensory organs, including the retina and cochlea. Although their physiological roles are not yet fully elucidated, CaBPs modulate Ca(2+) signaling through effectors such as voltage-gated Ca(v) Ca(2+) channels. In this study, we identified a splice-site mutation (c.637+1G>T) in Ca(2+)-binding protein 2 (CABP2) in three consanguineous Iranian families affected by moderate-to-severe hearing loss. This mutation, most likely a founder mutation, probably leads to skipping of exon 6 and premature truncation of the protein (p.Phe164Serfs(∗)4). Compared with wild-type CaBP2, the truncated CaBP2 showed altered Ca(2+) binding in isothermal titration calorimetry and less potent regulation of Ca(v)1.3 Ca(2+) channels. We show that genetic defects in CABP2 cause moderate-to-severe sensorineural hearing impairment. The mutation might cause a hypofunctional CaBP2 defective in Ca(2+) sensing and effector regulation in the inner ear.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Transtornos Cromossômicos/genética , Cóclea/fisiopatologia , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/fisiologia , Perda Auditiva/genética , Mutação , Cálcio/metabolismo , Transtornos Cromossômicos/metabolismo , Transtornos Cromossômicos/fisiopatologia , Cóclea/metabolismo , Consanguinidade , Éxons/genética , Feminino , Genes Recessivos , Predisposição Genética para Doença , Células HEK293 , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/metabolismo , Perda Auditiva/fisiopatologia , Humanos , Masculino , Linhagem
13.
Am J Hum Genet ; 91(5): 883-9, 2012 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-23122587

RESUMO

Already 40 genes have been identified for autosomal-recessive nonsyndromic hearing impairment (arNSHI); however, many more genes are still to be identified. In a Dutch family segregating arNSHI, homozygosity mapping revealed a 2.4 Mb homozygous region on chromosome 11 in p15.1-15.2, which partially overlapped with the previously described DFNB18 locus. However, no putative pathogenic variants were found in USH1C, the gene mutated in DFNB18 hearing impairment. The homozygous region contained 12 additional annotated genes including OTOG, the gene encoding otogelin, a component of the tectorial membrane. It is thought that otogelin contributes to the stability and strength of this membrane through interaction or stabilization of its constituent fibers. The murine orthologous gene was already known to cause hearing loss when defective. Analysis of OTOG in the Dutch family revealed a homozygous 1 bp deletion, c.5508delC, which leads to a shift in the reading frame and a premature stop codon, p.Ala1838ProfsX31. Further screening of 60 unrelated probands from Spanish arNSHI families detected compound heterozygous OTOG mutations in one family, c.6347C>T (p.Pro2116Leu) and c. 6559C>T (p.Arg2187X). The missense mutation p.Pro2116Leu affects a highly conserved residue in the fourth von Willebrand factor type D domain of otogelin. The subjects with OTOG mutations have a moderate hearing impairment, which can be associated with vestibular dysfunction. The flat to shallow "U" or slightly downsloping shaped audiograms closely resembled audiograms of individuals with recessive mutations in the gene encoding α-tectorin, another component of the tectorial membrane. This distinctive phenotype may represent a clue to orientate the molecular diagnosis.


Assuntos
Genes Recessivos , Perda Auditiva Neurossensorial/genética , Glicoproteínas de Membrana/genética , Mutação , Homozigoto , Humanos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Irmãos
14.
Am J Hum Genet ; 91(5): 872-82, 2012 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-23122586

RESUMO

Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Here we present OTOGL mutations, a homozygous one base pair deletion (c.1430 delT) causing a frameshift (p.Val477Glufs(∗)25) in a large consanguineous family and two compound heterozygous mutations, c.547C>T (p.Arg183(∗)) and c.5238+5G>A, in a nonconsanguineous family with moderate nonsyndromic sensorineural hearing loss. OTOGL maps to the DFNB84 locus at 12q21.31 and encodes otogelin-like, which has structural similarities to the epithelial-secreted mucin protein family. We demonstrate that Otogl is expressed in the inner ear of vertebrates with a transcription level that is high in embryonic, lower in neonatal, and much lower in adult stages. Otogelin-like is localized to the acellular membranes of the cochlea and the vestibular system and to a variety of inner ear cells located underneath these membranes. Knocking down of otogl with morpholinos in zebrafish leads to sensorineural hearing loss and anatomical changes in the inner ear, supporting that otogelin-like is essential for normal inner ear function. We propose that OTOGL mutations affect the production and/or function of acellular structures of the inner ear, which ultimately leads to sensorineural hearing loss.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Mutação , Adolescente , Animais , Pré-Escolar , Aberrações Cromossômicas , Cóclea/metabolismo , Cóclea/patologia , Exoma , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Mutação INDEL , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Ratos , Peixe-Zebra
15.
Ear Hear ; 36(2): 205-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25255398

RESUMO

OBJECTIVE: Currently, six genes are known to be associated with Usher syndrome type I, and mutations in most of these genes can also cause nonsyndromic hearing loss. The one exception is USH1G, which is currently only known to be involved in Usher syndrome type I and atypical Usher syndrome. DESIGN: A Dutch family with autosomal recessively inherited hearing loss was examined. Audiometric, ophthalmic, and vestibular evaluations were performed besides the genetic analysis. RESULTS: The hearing loss had an early onset with a downsloping audiogram configuration. Slight progression of the hearing loss was seen in both affected individuals. Compound heterozygous mutations in USH1G were found to segregate with the hearing loss in this family, a missense (c.310A>G, p.Met104Val) and a frameshift mutation (c.780insGCAC, p.Tyr261Alafs*96). Extensive ophthalmic and vestibular examinations demonstrated no abnormalities that are usually associated with Usher syndrome type I. CONCLUSIONS: This is the first family presented with nonsyndromic hearing loss caused by mutations in USH1G. Our findings expand the phenotypic spectrum of mutations in USH1G.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas do Tecido Nervoso/genética , Audiometria de Tons Puros , Feminino , Mutação da Fase de Leitura , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Síndromes de Usher/genética
16.
Am J Hum Genet ; 88(5): 628-34, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21549342

RESUMO

In a Dutch family with an X-linked postlingual progressive hearing impairment, a critical linkage interval was determined to span a region of 12.9 Mb flanked by the markers DXS7108 and DXS7110. This interval overlaps with the previously described DFNX4 locus and contains 75 annotated genes. Subsequent next-generation sequencing (NGS) detected one variant within the linkage interval, a nonsense mutation in SMPX. SMPX encodes the small muscle protein, X-linked (SMPX). Further screening was performed on 26 index patients from small families for which X-linked inheritance of nonsyndromic hearing impairment (NSHI) was not excluded. We detected a frameshift mutation in SMPX in one of the patients. Segregation analysis of both mutations in the families in whom they were found revealed that the mutations cosegregated with hearing impairment. Although we show that SMPX is expressed in many different organs, including the human inner ear, no obvious symptoms other than hearing impairment were observed in the patients. SMPX had previously been demonstrated to be specifically expressed in striated muscle and, therefore, seemed an unlikely candidate gene for hearing impairment. We hypothesize that SMPX functions in inner ear development and/or maintenance in the IGF-1 pathway, the integrin pathway through Rac1, or both.


Assuntos
Códon sem Sentido , Genes Ligados ao Cromossomo X , Perda Auditiva/genética , Proteínas Musculares/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura , Perda Auditiva/patologia , Humanos , Fator de Crescimento Insulin-Like I/genética , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência , Adulto Jovem
17.
J Hum Genet ; 59(12): 683-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25296581

RESUMO

With homozygosity mapping we have identified two large homozygous regions on chromosome 3q13.11-q13.31 and chromosome 19p13.3-q31.32 in a large Pakistani family suffering from autosomal recessive nonsyndromic hearing impairment (arNSHI). The region on chromosome 19 overlaps with the previously described deafness loci DFNB15, DFNB72 and DFNB95. Mutations in GIPC3 have been shown to underlie the nonsyndromic hearing impairment linked to these loci. Sequence analysis of all exons and exon-intron boundaries of GIPC3 revealed a homozygous canonical splice site mutation, c.226-1G>T, in GIPC3. This is the first mutation described in GIPC3 that affects splicing. The c.226-1G>T mutation is located in the acceptor splice site of intron 1 and is predicted to affect the normal splicing of exon 2. With a minigene assay it was shown to result in the use of an alternative acceptor site in exon 2, resulting in a frameshift and a premature stop codon. This study expands the mutational spectrum of GIPC3 in arNSHI.


Assuntos
Proteínas de Transporte/genética , Perda Auditiva Neurossensorial/genética , Sítios de Splice de RNA/genética , Proteínas Adaptadoras de Transdução de Sinal , Ligação Genética , Perda Auditiva Neurossensorial/patologia , Humanos , Mutação , Paquistão , Linhagem
18.
Am J Hum Genet ; 86(4): 604-10, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20346435

RESUMO

We identified overlapping homozygous regions within the DFNB84 locus in a nonconsanguineous Dutch family and a consanguineous Moroccan family with sensorineural autosomal-recessive nonsyndromic hearing impairment (arNSHI). The critical region of 3.17 Mb harbored the PTPRQ gene and mouse models with homozygous mutations in the orthologous gene display severe hearing loss. We show that the human PTPRQ gene was not completely annotated and that additional, alternatively spliced exons are present at the 5' end of the gene. Different PTPRQ isoforms are encoded with a varying number of fibronectin type 3 (FN3) domains, a transmembrane domain, and a phosphatase domain. Sequence analysis of the PTPRQ gene in members of the families revealed a nonsense mutation in the Dutch family and a missense mutation in the Moroccan family. The missense mutation is located in one of the FN3 domains. The nonsense mutation results in a truncated protein with only a small number of FN3 domains and no transmembrane or phosphatase domain. Hearing loss in the patients with PTPRQ mutations is likely to be congenital and moderate to profound and most severe in the family with the nonsense mutation. Progression of the hearing loss was observed in both families. The hearing loss is accompanied by vestibular dysfunction in all affected individuals. Although we show that PTPRQ is expressed in many tissues, no symptoms other than deafness were observed in the patients.


Assuntos
Códon sem Sentido/genética , Genes Recessivos , Perda Auditiva/genética , Perda Auditiva/patologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Doenças Vestibulares/genética , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Homologia de Sequência de Aminoácidos , Doenças Vestibulares/fisiopatologia , Testes de Função Vestibular
19.
Am J Hum Genet ; 86(2): 138-47, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20137778

RESUMO

We identified overlapping homozygous regions within the DFNB25 locus in two Dutch and ten Pakistani families with sensorineural autosomal-recessive nonsyndromic hearing impairment (arNSHI). Only one of the families, W98-053, was not consanguineous, and its sibship pointed toward a reduced critical region of 0.9 Mb. This region contained the GRXCR1 gene, and the orthologous mouse gene was described to be mutated in the pirouette (pi) mutant with resulting hearing loss and circling behavior. Sequence analysis of the GRXCR1 gene in hearing-impaired family members revealed splice-site mutations in two Dutch families and a missense and nonsense mutation, respectively, in two Pakistani families. The splice-site mutations are predicted to cause frameshifts and premature stop codons. In family W98-053, this could be confirmed by cDNA analysis. GRXCR1 is predicted to contain a GRX-like domain. GRX domains are involved in reversible S-glutathionylation of proteins and thereby in the modulation of activity and/or localization of these proteins. The missense mutation is located in this domain, whereas the nonsense and splice-site mutations may result in complete or partial absence of the GRX-like domain or of the complete protein. Hearing loss in patients with GRXCR1 mutations is congenital and is moderate to profound. Progression of the hearing loss was observed in family W98-053. Vestibular dysfunction was observed in some but not all affected individuals. Quantitative analysis of GRXCR1 transcripts in fetal and adult human tissues revealed a preferential expression of the gene in fetal cochlea, which may explain the nonsyndromic nature of the hearing impairment.


Assuntos
Mapeamento Cromossômico , Genes Recessivos/genética , Glutarredoxinas/genética , Perda Auditiva/genética , Homozigoto , Mutação/genética , Sequência de Aminoácidos , Sequência de Bases , Cóclea/metabolismo , Cóclea/patologia , Análise Mutacional de DNA , Família , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Loci Gênicos/genética , Glutarredoxinas/química , Perda Auditiva/fisiopatologia , Humanos , Escore Lod , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Splicing de RNA/genética , Alinhamento de Sequência , Vestíbulo do Labirinto/fisiopatologia
20.
J Hum Genet ; 58(12): 819-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24172246

RESUMO

Bjørnstad syndrome is an extremely rare condition characterized by pilitorti and nerve deafness. Only few large families have been reported worldwide. Here we describe a large Pakistani family with five affected individuals. The hair fibers of all the patients were twisted around their axis and devoid of any pigment. In addition the patients had a moderate-to-severe degree of hearing impairment. Genotyping with high-density single-nucleotide polymorphism arrays showed homozygosity in two intervals on chromosome 2. Linkage with one of these regions (genomic position 218745685-221025443, hg19) was confirmed. This region encompasses the BCS1L gene. Mutations in this gene have previously been associated with Bjørnstad's syndrome. We sequenced the BCS1L gene for identification of the causative mutation in the family. A novel homozygous missense mutation c.901T>A was identified, which segregated with the disease in the family. This mutation results in the amino acid change p.Tyr301Asn and was predicted to be pathogenic by bioinformatics tools.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Doenças do Cabelo/genética , Perda Auditiva Neurossensorial/genética , Doenças Mitocondriais/congênito , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , ATPases Associadas a Diversas Atividades Celulares , Criança , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/genética , Paquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA